1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
---
:name: zsymv
:md5sum: f54cbfcd1edd0de7ed54505e307a23e0
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- alpha:
:type: doublecomplex
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- x:
:type: doublecomplex
:intent: input
:dims:
- 1 + ( n - 1 )*abs( incx )
- incx:
:type: integer
:intent: input
- beta:
:type: doublecomplex
:intent: input
- y:
:type: doublecomplex
:intent: input/output
:dims:
- 1 + ( n - 1 )*abs( incy )
- incy:
:type: integer
:intent: input
:substitutions: {}
:fortran_help: " SUBROUTINE ZSYMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZSYMV performs the matrix-vector operation\n\
*\n\
* y := alpha*A*x + beta*y,\n\
*\n\
* where alpha and beta are scalars, x and y are n element vectors and\n\
* A is an n by n symmetric matrix.\n\
*\n\n\
* Arguments\n\
* ==========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* On entry, UPLO specifies whether the upper or lower\n\
* triangular part of the array A is to be referenced as\n\
* follows:\n\
*\n\
* UPLO = 'U' or 'u' Only the upper triangular part of A\n\
* is to be referenced.\n\
*\n\
* UPLO = 'L' or 'l' Only the lower triangular part of A\n\
* is to be referenced.\n\
*\n\
* Unchanged on exit.\n\
*\n\
* N (input) INTEGER\n\
* On entry, N specifies the order of the matrix A.\n\
* N must be at least zero.\n\
* Unchanged on exit.\n\
*\n\
* ALPHA (input) COMPLEX*16\n\
* On entry, ALPHA specifies the scalar alpha.\n\
* Unchanged on exit.\n\
*\n\
* A (input) COMPLEX*16 array, dimension ( LDA, N )\n\
* Before entry, with UPLO = 'U' or 'u', the leading n by n\n\
* upper triangular part of the array A must contain the upper\n\
* triangular part of the symmetric matrix and the strictly\n\
* lower triangular part of A is not referenced.\n\
* Before entry, with UPLO = 'L' or 'l', the leading n by n\n\
* lower triangular part of the array A must contain the lower\n\
* triangular part of the symmetric matrix and the strictly\n\
* upper triangular part of A is not referenced.\n\
* Unchanged on exit.\n\
*\n\
* LDA (input) INTEGER\n\
* On entry, LDA specifies the first dimension of A as declared\n\
* in the calling (sub) program. LDA must be at least\n\
* max( 1, N ).\n\
* Unchanged on exit.\n\
*\n\
* X (input) COMPLEX*16 array, dimension at least\n\
* ( 1 + ( N - 1 )*abs( INCX ) ).\n\
* Before entry, the incremented array X must contain the N-\n\
* element vector x.\n\
* Unchanged on exit.\n\
*\n\
* INCX (input) INTEGER\n\
* On entry, INCX specifies the increment for the elements of\n\
* X. INCX must not be zero.\n\
* Unchanged on exit.\n\
*\n\
* BETA (input) COMPLEX*16\n\
* On entry, BETA specifies the scalar beta. When BETA is\n\
* supplied as zero then Y need not be set on input.\n\
* Unchanged on exit.\n\
*\n\
* Y (input/output) COMPLEX*16 array, dimension at least\n\
* ( 1 + ( N - 1 )*abs( INCY ) ).\n\
* Before entry, the incremented array Y must contain the n\n\
* element vector y. On exit, Y is overwritten by the updated\n\
* vector y.\n\
*\n\
* INCY (input) INTEGER\n\
* On entry, INCY specifies the increment for the elements of\n\
* Y. INCY must not be zero.\n\
* Unchanged on exit.\n\
*\n\n\
* =====================================================================\n\
*\n"
|