File: ztpcon

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (95 lines) | stat: -rwxr-xr-x 2,915 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
--- 
:name: ztpcon
:md5sum: 900599a9d663838136fafdce8c072da9
:category: :subroutine
:arguments: 
- norm: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- diag: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - ldap
- rcond: 
    :type: doublereal
    :intent: output
- work: 
    :type: doublecomplex
    :intent: workspace
    :dims: 
    - 2*n
- rwork: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  n: ((int)sqrtf(ldap*8+1.0f)-1)/2
:fortran_help: "      SUBROUTINE ZTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZTPCON estimates the reciprocal of the condition number of a packed\n\
  *  triangular matrix A, in either the 1-norm or the infinity-norm.\n\
  *\n\
  *  The norm of A is computed and an estimate is obtained for\n\
  *  norm(inv(A)), then the reciprocal of the condition number is\n\
  *  computed as\n\
  *     RCOND = 1 / ( norm(A) * norm(inv(A)) ).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  NORM    (input) CHARACTER*1\n\
  *          Specifies whether the 1-norm condition number or the\n\
  *          infinity-norm condition number is required:\n\
  *          = '1' or 'O':  1-norm;\n\
  *          = 'I':         Infinity-norm.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  A is upper triangular;\n\
  *          = 'L':  A is lower triangular.\n\
  *\n\
  *  DIAG    (input) CHARACTER*1\n\
  *          = 'N':  A is non-unit triangular;\n\
  *          = 'U':  A is unit triangular.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)\n\
  *          The upper or lower triangular matrix A, packed columnwise in\n\
  *          a linear array.  The j-th column of A is stored in the array\n\
  *          AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *          If DIAG = 'U', the diagonal elements of A are not referenced\n\
  *          and are assumed to be 1.\n\
  *\n\
  *  RCOND   (output) DOUBLE PRECISION\n\
  *          The reciprocal of the condition number of the matrix A,\n\
  *          computed as RCOND = 1/(norm(A) * norm(inv(A))).\n\
  *\n\
  *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n\
  *\n\
  *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"