1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
---
:name: zunmbr
:md5sum: 39e1a87077ff3d4f0239a32149d77cc5
:category: :subroutine
:arguments:
- vect:
:type: char
:intent: input
- side:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- MIN(nq,k)
- lda:
:type: integer
:intent: input
- tau:
:type: doublecomplex
:intent: input
:dims:
- MIN(nq,k)
- c:
:type: doublecomplex
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: doublecomplex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
- info:
:type: integer
:intent: output
:substitutions:
nq: "lsame_(&side,\"L\") ? m : lsame_(&side,\"R\") ? n : 0"
:fortran_help: " SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C\n\
* with\n\
* SIDE = 'L' SIDE = 'R'\n\
* TRANS = 'N': Q * C C * Q\n\
* TRANS = 'C': Q**H * C C * Q**H\n\
*\n\
* If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C\n\
* with\n\
* SIDE = 'L' SIDE = 'R'\n\
* TRANS = 'N': P * C C * P\n\
* TRANS = 'C': P**H * C C * P**H\n\
*\n\
* Here Q and P**H are the unitary matrices determined by ZGEBRD when\n\
* reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q\n\
* and P**H are defined as products of elementary reflectors H(i) and\n\
* G(i) respectively.\n\
*\n\
* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the\n\
* order of the unitary matrix Q or P**H that is applied.\n\
*\n\
* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:\n\
* if nq >= k, Q = H(1) H(2) . . . H(k);\n\
* if nq < k, Q = H(1) H(2) . . . H(nq-1).\n\
*\n\
* If VECT = 'P', A is assumed to have been a K-by-NQ matrix:\n\
* if k < nq, P = G(1) G(2) . . . G(k);\n\
* if k >= nq, P = G(1) G(2) . . . G(nq-1).\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* VECT (input) CHARACTER*1\n\
* = 'Q': apply Q or Q**H;\n\
* = 'P': apply P or P**H.\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': apply Q, Q**H, P or P**H from the Left;\n\
* = 'R': apply Q, Q**H, P or P**H from the Right.\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* = 'N': No transpose, apply Q or P;\n\
* = 'C': Conjugate transpose, apply Q**H or P**H.\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C. N >= 0.\n\
*\n\
* K (input) INTEGER\n\
* If VECT = 'Q', the number of columns in the original\n\
* matrix reduced by ZGEBRD.\n\
* If VECT = 'P', the number of rows in the original\n\
* matrix reduced by ZGEBRD.\n\
* K >= 0.\n\
*\n\
* A (input) COMPLEX*16 array, dimension\n\
* (LDA,min(nq,K)) if VECT = 'Q'\n\
* (LDA,nq) if VECT = 'P'\n\
* The vectors which define the elementary reflectors H(i) and\n\
* G(i), whose products determine the matrices Q and P, as\n\
* returned by ZGEBRD.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A.\n\
* If VECT = 'Q', LDA >= max(1,nq);\n\
* if VECT = 'P', LDA >= max(1,min(nq,K)).\n\
*\n\
* TAU (input) COMPLEX*16 array, dimension (min(nq,K))\n\
* TAU(i) must contain the scalar factor of the elementary\n\
* reflector H(i) or G(i) which determines Q or P, as returned\n\
* by ZGEBRD in the array argument TAUQ or TAUP.\n\
*\n\
* C (input/output) COMPLEX*16 array, dimension (LDC,N)\n\
* On entry, the M-by-N matrix C.\n\
* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q\n\
* or P*C or P**H*C or C*P or C*P**H.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK.\n\
* If SIDE = 'L', LWORK >= max(1,N);\n\
* if SIDE = 'R', LWORK >= max(1,M);\n\
* if N = 0 or M = 0, LWORK >= 1.\n\
* For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',\n\
* and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the\n\
* optimal blocksize. (NB = 0 if M = 0 or N = 0.)\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN\n CHARACTER TRANST\n INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n INTEGER ILAENV\n EXTERNAL LSAME, ILAENV\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL XERBLA, ZUNMLQ, ZUNMQR\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX, MIN\n\
* ..\n"
|