1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
---
:name: zunmr3
:md5sum: 9936c02446a1fbd2f55c0aad91334345
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- l:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- m
- lda:
:type: integer
:intent: input
- tau:
:type: doublecomplex
:intent: input
:dims:
- k
- c:
:type: doublecomplex
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: doublecomplex
:intent: workspace
:dims:
- "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZUNMR3 overwrites the general complex m by n matrix C with\n\
*\n\
* Q * C if SIDE = 'L' and TRANS = 'N', or\n\
*\n\
* Q'* C if SIDE = 'L' and TRANS = 'C', or\n\
*\n\
* C * Q if SIDE = 'R' and TRANS = 'N', or\n\
*\n\
* C * Q' if SIDE = 'R' and TRANS = 'C',\n\
*\n\
* where Q is a complex unitary matrix defined as the product of k\n\
* elementary reflectors\n\
*\n\
* Q = H(1) H(2) . . . H(k)\n\
*\n\
* as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n\n\
* if SIDE = 'R'.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': apply Q or Q' from the Left\n\
* = 'R': apply Q or Q' from the Right\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* = 'N': apply Q (No transpose)\n\
* = 'C': apply Q' (Conjugate transpose)\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C. N >= 0.\n\
*\n\
* K (input) INTEGER\n\
* The number of elementary reflectors whose product defines\n\
* the matrix Q.\n\
* If SIDE = 'L', M >= K >= 0;\n\
* if SIDE = 'R', N >= K >= 0.\n\
*\n\
* L (input) INTEGER\n\
* The number of columns of the matrix A containing\n\
* the meaningful part of the Householder reflectors.\n\
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.\n\
*\n\
* A (input) COMPLEX*16 array, dimension\n\
* (LDA,M) if SIDE = 'L',\n\
* (LDA,N) if SIDE = 'R'\n\
* The i-th row must contain the vector which defines the\n\
* elementary reflector H(i), for i = 1,2,...,k, as returned by\n\
* ZTZRZF in the last k rows of its array argument A.\n\
* A is modified by the routine but restored on exit.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,K).\n\
*\n\
* TAU (input) COMPLEX*16 array, dimension (K)\n\
* TAU(i) must contain the scalar factor of the elementary\n\
* reflector H(i), as returned by ZTZRZF.\n\
*\n\
* C (input/output) COMPLEX*16 array, dimension (LDC,N)\n\
* On entry, the m-by-n matrix C.\n\
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace) COMPLEX*16 array, dimension\n\
* (N) if SIDE = 'L',\n\
* (M) if SIDE = 'R'\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n\
*\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL LEFT, NOTRAN\n INTEGER I, I1, I2, I3, IC, JA, JC, MI, NI, NQ\n COMPLEX*16 TAUI\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL XERBLA, ZLARZ\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC DCONJG, MAX\n\
* ..\n"
|