File: ddisna.c

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (75 lines) | stat: -rwxr-xr-x 4,521 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "rb_lapack.h"

extern VOID ddisna_(char* job, integer* m, integer* n, doublereal* d, doublereal* sep, integer* info);


static VALUE
rblapack_ddisna(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_job;
  char job; 
  VALUE rblapack_n;
  integer n; 
  VALUE rblapack_d;
  doublereal *d; 
  VALUE rblapack_sep;
  doublereal *sep; 
  VALUE rblapack_info;
  integer info; 

  integer m;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  sep, info = NumRu::Lapack.ddisna( job, n, d, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )\n\n*  Purpose\n*  =======\n*\n*  DDISNA computes the reciprocal condition numbers for the eigenvectors\n*  of a real symmetric or complex Hermitian matrix or for the left or\n*  right singular vectors of a general m-by-n matrix. The reciprocal\n*  condition number is the 'gap' between the corresponding eigenvalue or\n*  singular value and the nearest other one.\n*\n*  The bound on the error, measured by angle in radians, in the I-th\n*  computed vector is given by\n*\n*         DLAMCH( 'E' ) * ( ANORM / SEP( I ) )\n*\n*  where ANORM = 2-norm(A) = max( abs( D(j) ) ).  SEP(I) is not allowed\n*  to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of\n*  the error bound.\n*\n*  DDISNA may also be used to compute error bounds for eigenvectors of\n*  the generalized symmetric definite eigenproblem.\n*\n\n*  Arguments\n*  =========\n*\n*  JOB     (input) CHARACTER*1\n*          Specifies for which problem the reciprocal condition numbers\n*          should be computed:\n*          = 'E':  the eigenvectors of a symmetric/Hermitian matrix;\n*          = 'L':  the left singular vectors of a general matrix;\n*          = 'R':  the right singular vectors of a general matrix.\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix. M >= 0.\n*\n*  N       (input) INTEGER\n*          If JOB = 'L' or 'R', the number of columns of the matrix,\n*          in which case N >= 0. Ignored if JOB = 'E'.\n*\n*  D       (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E'\n*                              dimension (min(M,N)) if JOB = 'L' or 'R'\n*          The eigenvalues (if JOB = 'E') or singular values (if JOB =\n*          'L' or 'R') of the matrix, in either increasing or decreasing\n*          order. If singular values, they must be non-negative.\n*\n*  SEP     (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E'\n*                               dimension (min(M,N)) if JOB = 'L' or 'R'\n*          The reciprocal condition numbers of the vectors.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  sep, info = NumRu::Lapack.ddisna( job, n, d, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_job = argv[0];
  rblapack_n = argv[1];
  rblapack_d = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  job = StringValueCStr(rblapack_job)[0];
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (3th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
  m = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_DFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
  d = NA_PTR_TYPE(rblapack_d, doublereal*);
  n = NUM2INT(rblapack_n);
  {
    na_shape_t shape[1];
    shape[0] = lsame_(&job,"E") ? m : ((lsame_(&job,"L")) || (lsame_(&job,"R"))) ? MIN(m,n) : 0;
    rblapack_sep = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  sep = NA_PTR_TYPE(rblapack_sep, doublereal*);

  ddisna_(&job, &m, &n, d, sep, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_sep, rblapack_info);
}

void
init_lapack_ddisna(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ddisna", rblapack_ddisna, -1);
}