File: dlanv2.c

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (82 lines) | stat: -rwxr-xr-x 4,204 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include "rb_lapack.h"

extern VOID dlanv2_(doublereal* a, doublereal* b, doublereal* c, doublereal* d, doublereal* rt1r, doublereal* rt1i, doublereal* rt2r, doublereal* rt2i, doublereal* cs, doublereal* sn);


static VALUE
rblapack_dlanv2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  doublereal a; 
  VALUE rblapack_b;
  doublereal b; 
  VALUE rblapack_c;
  doublereal c; 
  VALUE rblapack_d;
  doublereal d; 
  VALUE rblapack_rt1r;
  doublereal rt1r; 
  VALUE rblapack_rt1i;
  doublereal rt1i; 
  VALUE rblapack_rt2r;
  doublereal rt2r; 
  VALUE rblapack_rt2i;
  doublereal rt2i; 
  VALUE rblapack_cs;
  doublereal cs; 
  VALUE rblapack_sn;
  doublereal sn; 


  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  rt1r, rt1i, rt2r, rt2i, cs, sn, a, b, c, d = NumRu::Lapack.dlanv2( a, b, c, d, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )\n\n*  Purpose\n*  =======\n*\n*  DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric\n*  matrix in standard form:\n*\n*       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]\n*       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]\n*\n*  where either\n*  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or\n*  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex\n*  conjugate eigenvalues.\n*\n\n*  Arguments\n*  =========\n*\n*  A       (input/output) DOUBLE PRECISION\n*  B       (input/output) DOUBLE PRECISION\n*  C       (input/output) DOUBLE PRECISION\n*  D       (input/output) DOUBLE PRECISION\n*          On entry, the elements of the input matrix.\n*          On exit, they are overwritten by the elements of the\n*          standardised Schur form.\n*\n*  RT1R    (output) DOUBLE PRECISION\n*  RT1I    (output) DOUBLE PRECISION\n*  RT2R    (output) DOUBLE PRECISION\n*  RT2I    (output) DOUBLE PRECISION\n*          The real and imaginary parts of the eigenvalues. If the\n*          eigenvalues are a complex conjugate pair, RT1I > 0.\n*\n*  CS      (output) DOUBLE PRECISION\n*  SN      (output) DOUBLE PRECISION\n*          Parameters of the rotation matrix.\n*\n\n*  Further Details\n*  ===============\n*\n*  Modified by V. Sima, Research Institute for Informatics, Bucharest,\n*  Romania, to reduce the risk of cancellation errors,\n*  when computing real eigenvalues, and to ensure, if possible, that\n*  abs(RT1R) >= abs(RT2R).\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  rt1r, rt1i, rt2r, rt2i, cs, sn, a, b, c, d = NumRu::Lapack.dlanv2( a, b, c, d, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_a = argv[0];
  rblapack_b = argv[1];
  rblapack_c = argv[2];
  rblapack_d = argv[3];
  if (argc == 4) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  a = NUM2DBL(rblapack_a);
  c = NUM2DBL(rblapack_c);
  b = NUM2DBL(rblapack_b);
  d = NUM2DBL(rblapack_d);

  dlanv2_(&a, &b, &c, &d, &rt1r, &rt1i, &rt2r, &rt2i, &cs, &sn);

  rblapack_rt1r = rb_float_new((double)rt1r);
  rblapack_rt1i = rb_float_new((double)rt1i);
  rblapack_rt2r = rb_float_new((double)rt2r);
  rblapack_rt2i = rb_float_new((double)rt2i);
  rblapack_cs = rb_float_new((double)cs);
  rblapack_sn = rb_float_new((double)sn);
  rblapack_a = rb_float_new((double)a);
  rblapack_b = rb_float_new((double)b);
  rblapack_c = rb_float_new((double)c);
  rblapack_d = rb_float_new((double)d);
  return rb_ary_new3(10, rblapack_rt1r, rblapack_rt1i, rblapack_rt2r, rblapack_rt2i, rblapack_cs, rblapack_sn, rblapack_a, rblapack_b, rblapack_c, rblapack_d);
}

void
init_lapack_dlanv2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlanv2", rblapack_dlanv2, -1);
}