1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
#include "rb_lapack.h"
extern VOID slasd0_(integer* n, integer* sqre, real* d, real* e, real* u, integer* ldu, real* vt, integer* ldvt, integer* smlsiz, integer* iwork, real* work, integer* info);
static VALUE
rblapack_slasd0(int argc, VALUE *argv, VALUE self){
VALUE rblapack_sqre;
integer sqre;
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
real *e;
VALUE rblapack_smlsiz;
integer smlsiz;
VALUE rblapack_u;
real *u;
VALUE rblapack_vt;
real *vt;
VALUE rblapack_info;
integer info;
VALUE rblapack_d_out__;
real *d_out__;
integer *iwork;
real *work;
integer n;
integer ldu;
integer ldvt;
integer m;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n u, vt, info, d = NumRu::Lapack.slasd0( sqre, d, e, smlsiz, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK, WORK, INFO )\n\n* Purpose\n* =======\n*\n* Using a divide and conquer approach, SLASD0 computes the singular\n* value decomposition (SVD) of a real upper bidiagonal N-by-M\n* matrix B with diagonal D and offdiagonal E, where M = N + SQRE.\n* The algorithm computes orthogonal matrices U and VT such that\n* B = U * S * VT. The singular values S are overwritten on D.\n*\n* A related subroutine, SLASDA, computes only the singular values,\n* and optionally, the singular vectors in compact form.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* On entry, the row dimension of the upper bidiagonal matrix.\n* This is also the dimension of the main diagonal array D.\n*\n* SQRE (input) INTEGER\n* Specifies the column dimension of the bidiagonal matrix.\n* = 0: The bidiagonal matrix has column dimension M = N;\n* = 1: The bidiagonal matrix has column dimension M = N+1;\n*\n* D (input/output) REAL array, dimension (N)\n* On entry D contains the main diagonal of the bidiagonal\n* matrix.\n* On exit D, if INFO = 0, contains its singular values.\n*\n* E (input) REAL array, dimension (M-1)\n* Contains the subdiagonal entries of the bidiagonal matrix.\n* On exit, E has been destroyed.\n*\n* U (output) REAL array, dimension at least (LDQ, N)\n* On exit, U contains the left singular vectors.\n*\n* LDU (input) INTEGER\n* On entry, leading dimension of U.\n*\n* VT (output) REAL array, dimension at least (LDVT, M)\n* On exit, VT' contains the right singular vectors.\n*\n* LDVT (input) INTEGER\n* On entry, leading dimension of VT.\n*\n* SMLSIZ (input) INTEGER\n* On entry, maximum size of the subproblems at the\n* bottom of the computation tree.\n*\n* IWORK (workspace) INTEGER array, dimension (8*N)\n*\n* WORK (workspace) REAL array, dimension (3*M**2+2*M)\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = 1, a singular value did not converge\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,\n $ J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,\n $ NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI\n REAL ALPHA, BETA\n* ..\n* .. External Subroutines ..\n EXTERNAL SLASD1, SLASDQ, SLASDT, XERBLA\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n u, vt, info, d = NumRu::Lapack.slasd0( sqre, d, e, smlsiz, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_sqre = argv[0];
rblapack_d = argv[1];
rblapack_e = argv[2];
rblapack_smlsiz = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
sqre = NUM2INT(rblapack_sqre);
smlsiz = NUM2INT(rblapack_smlsiz);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (2th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
m = sqre == 0 ? n : sqre == 1 ? n+1 : 0;
ldu = n;
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (3th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (m-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", m-1);
if (NA_TYPE(rblapack_e) != NA_SFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_SFLOAT);
e = NA_PTR_TYPE(rblapack_e, real*);
ldvt = m;
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = n;
rblapack_u = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
u = NA_PTR_TYPE(rblapack_u, real*);
{
na_shape_t shape[2];
shape[0] = ldvt;
shape[1] = m;
rblapack_vt = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
vt = NA_PTR_TYPE(rblapack_vt, real*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, real*);
MEMCPY(d_out__, d, real, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
iwork = ALLOC_N(integer, (8*n));
work = ALLOC_N(real, (3*pow(m,2)+2*m));
slasd0_(&n, &sqre, d, e, u, &ldu, vt, &ldvt, &smlsiz, iwork, work, &info);
free(iwork);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_u, rblapack_vt, rblapack_info, rblapack_d);
}
void
init_lapack_slasd0(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slasd0", rblapack_slasd0, -1);
}
|