1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#include "rb_lapack.h"
extern VOID sormhr_(char* side, char* trans, integer* m, integer* n, integer* ilo, integer* ihi, real* a, integer* lda, real* tau, real* c, integer* ldc, real* work, integer* lwork, integer* info);
static VALUE
rblapack_sormhr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_trans;
char trans;
VALUE rblapack_ilo;
integer ilo;
VALUE rblapack_ihi;
integer ihi;
VALUE rblapack_a;
real *a;
VALUE rblapack_tau;
real *tau;
VALUE rblapack_c;
real *c;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_work;
real *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_c_out__;
real *c_out__;
integer lda;
integer m;
integer ldc;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n work, info, c = NumRu::Lapack.sormhr( side, trans, ilo, ihi, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SORMHR overwrites the general real M-by-N matrix C with\n*\n* SIDE = 'L' SIDE = 'R'\n* TRANS = 'N': Q * C C * Q\n* TRANS = 'T': Q**T * C C * Q**T\n*\n* where Q is a real orthogonal matrix of order nq, with nq = m if\n* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of\n* IHI-ILO elementary reflectors, as returned by SGEHRD:\n*\n* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'L': apply Q or Q**T from the Left;\n* = 'R': apply Q or Q**T from the Right.\n*\n* TRANS (input) CHARACTER*1\n* = 'N': No transpose, apply Q;\n* = 'T': Transpose, apply Q**T.\n*\n* M (input) INTEGER\n* The number of rows of the matrix C. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix C. N >= 0.\n*\n* ILO (input) INTEGER\n* IHI (input) INTEGER\n* ILO and IHI must have the same values as in the previous call\n* of SGEHRD. Q is equal to the unit matrix except in the\n* submatrix Q(ilo+1:ihi,ilo+1:ihi).\n* If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and\n* ILO = 1 and IHI = 0, if M = 0;\n* if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and\n* ILO = 1 and IHI = 0, if N = 0.\n*\n* A (input) REAL array, dimension\n* (LDA,M) if SIDE = 'L'\n* (LDA,N) if SIDE = 'R'\n* The vectors which define the elementary reflectors, as\n* returned by SGEHRD.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A.\n* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.\n*\n* TAU (input) REAL array, dimension\n* (M-1) if SIDE = 'L'\n* (N-1) if SIDE = 'R'\n* TAU(i) must contain the scalar factor of the elementary\n* reflector H(i), as returned by SGEHRD.\n*\n* C (input/output) REAL array, dimension (LDC,N)\n* On entry, the M-by-N matrix C.\n* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1,M).\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* If SIDE = 'L', LWORK >= max(1,N);\n* if SIDE = 'R', LWORK >= max(1,M).\n* For optimum performance LWORK >= N*NB if SIDE = 'L', and\n* LWORK >= M*NB if SIDE = 'R', where NB is the optimal\n* blocksize.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL LEFT, LQUERY\n INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NH, NI, NQ, NW\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n INTEGER ILAENV\n EXTERNAL ILAENV, LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL SORMQR, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX, MIN\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n work, info, c = NumRu::Lapack.sormhr( side, trans, ilo, ihi, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 7 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
rblapack_side = argv[0];
rblapack_trans = argv[1];
rblapack_ilo = argv[2];
rblapack_ihi = argv[3];
rblapack_a = argv[4];
rblapack_tau = argv[5];
rblapack_c = argv[6];
if (argc == 8) {
rblapack_lwork = argv[7];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
side = StringValueCStr(rblapack_side)[0];
ilo = NUM2INT(rblapack_ilo);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (5th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (5th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
m = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (7th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (7th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_SFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
c = NA_PTR_TYPE(rblapack_c, real*);
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_tau))
rb_raise(rb_eArgError, "tau (6th argument) must be NArray");
if (NA_RANK(rblapack_tau) != 1)
rb_raise(rb_eArgError, "rank of tau (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_tau) != (m-1))
rb_raise(rb_eRuntimeError, "shape 0 of tau must be %d", m-1);
if (NA_TYPE(rblapack_tau) != NA_SFLOAT)
rblapack_tau = na_change_type(rblapack_tau, NA_SFLOAT);
tau = NA_PTR_TYPE(rblapack_tau, real*);
ihi = NUM2INT(rblapack_ihi);
if (rblapack_lwork == Qnil)
lwork = lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, real*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, real*);
MEMCPY(c_out__, c, real, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
sormhr_(&side, &trans, &m, &n, &ilo, &ihi, a, &lda, tau, c, &ldc, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_work, rblapack_info, rblapack_c);
}
void
init_lapack_sormhr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "sormhr", rblapack_sormhr, -1);
}
|