File: sormhr.c

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (133 lines) | stat: -rwxr-xr-x 8,193 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#include "rb_lapack.h"

extern VOID sormhr_(char* side, char* trans, integer* m, integer* n, integer* ilo, integer* ihi, real* a, integer* lda, real* tau, real* c, integer* ldc, real* work, integer* lwork, integer* info);


static VALUE
rblapack_sormhr(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_side;
  char side; 
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_ilo;
  integer ilo; 
  VALUE rblapack_ihi;
  integer ihi; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_tau;
  real *tau; 
  VALUE rblapack_c;
  real *c; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_work;
  real *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_c_out__;
  real *c_out__;

  integer lda;
  integer m;
  integer ldc;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, c = NumRu::Lapack.sormhr( side, trans, ilo, ihi, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  SORMHR overwrites the general real M-by-N matrix C with\n*\n*                  SIDE = 'L'     SIDE = 'R'\n*  TRANS = 'N':      Q * C          C * Q\n*  TRANS = 'T':      Q**T * C       C * Q**T\n*\n*  where Q is a real orthogonal matrix of order nq, with nq = m if\n*  SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of\n*  IHI-ILO elementary reflectors, as returned by SGEHRD:\n*\n*  Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n*\n\n*  Arguments\n*  =========\n*\n*  SIDE    (input) CHARACTER*1\n*          = 'L': apply Q or Q**T from the Left;\n*          = 'R': apply Q or Q**T from the Right.\n*\n*  TRANS   (input) CHARACTER*1\n*          = 'N':  No transpose, apply Q;\n*          = 'T':  Transpose, apply Q**T.\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix C. M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix C. N >= 0.\n*\n*  ILO     (input) INTEGER\n*  IHI     (input) INTEGER\n*          ILO and IHI must have the same values as in the previous call\n*          of SGEHRD. Q is equal to the unit matrix except in the\n*          submatrix Q(ilo+1:ihi,ilo+1:ihi).\n*          If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and\n*          ILO = 1 and IHI = 0, if M = 0;\n*          if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and\n*          ILO = 1 and IHI = 0, if N = 0.\n*\n*  A       (input) REAL array, dimension\n*                               (LDA,M) if SIDE = 'L'\n*                               (LDA,N) if SIDE = 'R'\n*          The vectors which define the elementary reflectors, as\n*          returned by SGEHRD.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.\n*          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.\n*\n*  TAU     (input) REAL array, dimension\n*                               (M-1) if SIDE = 'L'\n*                               (N-1) if SIDE = 'R'\n*          TAU(i) must contain the scalar factor of the elementary\n*          reflector H(i), as returned by SGEHRD.\n*\n*  C       (input/output) REAL array, dimension (LDC,N)\n*          On entry, the M-by-N matrix C.\n*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.\n*\n*  LDC     (input) INTEGER\n*          The leading dimension of the array C. LDC >= max(1,M).\n*\n*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.\n*          If SIDE = 'L', LWORK >= max(1,N);\n*          if SIDE = 'R', LWORK >= max(1,M).\n*          For optimum performance LWORK >= N*NB if SIDE = 'L', and\n*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal\n*          blocksize.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            LEFT, LQUERY\n      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NH, NI, NQ, NW\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      INTEGER            ILAENV\n      EXTERNAL           ILAENV, LSAME\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           SORMQR, XERBLA\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  work, info, c = NumRu::Lapack.sormhr( side, trans, ilo, ihi, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 7 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
  rblapack_side = argv[0];
  rblapack_trans = argv[1];
  rblapack_ilo = argv[2];
  rblapack_ihi = argv[3];
  rblapack_a = argv[4];
  rblapack_tau = argv[5];
  rblapack_c = argv[6];
  if (argc == 8) {
    rblapack_lwork = argv[7];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  side = StringValueCStr(rblapack_side)[0];
  ilo = NUM2INT(rblapack_ilo);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (5th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (5th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  m = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (7th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 2)
    rb_raise(rb_eArgError, "rank of c (7th argument) must be %d", 2);
  ldc = NA_SHAPE0(rblapack_c);
  n = NA_SHAPE1(rblapack_c);
  if (NA_TYPE(rblapack_c) != NA_SFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
  c = NA_PTR_TYPE(rblapack_c, real*);
  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_tau))
    rb_raise(rb_eArgError, "tau (6th argument) must be NArray");
  if (NA_RANK(rblapack_tau) != 1)
    rb_raise(rb_eArgError, "rank of tau (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_tau) != (m-1))
    rb_raise(rb_eRuntimeError, "shape 0 of tau must be %d", m-1);
  if (NA_TYPE(rblapack_tau) != NA_SFLOAT)
    rblapack_tau = na_change_type(rblapack_tau, NA_SFLOAT);
  tau = NA_PTR_TYPE(rblapack_tau, real*);
  ihi = NUM2INT(rblapack_ihi);
  if (rblapack_lwork == Qnil)
    lwork = lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldc;
    shape[1] = n;
    rblapack_c_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  c_out__ = NA_PTR_TYPE(rblapack_c_out__, real*);
  MEMCPY(c_out__, c, real, NA_TOTAL(rblapack_c));
  rblapack_c = rblapack_c_out__;
  c = c_out__;

  sormhr_(&side, &trans, &m, &n, &ilo, &ihi, a, &lda, tau, c, &ldc, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(3, rblapack_work, rblapack_info, rblapack_c);
}

void
init_lapack_sormhr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "sormhr", rblapack_sormhr, -1);
}