File: zpbrfs.c

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (145 lines) | stat: -rwxr-xr-x 8,659 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include "rb_lapack.h"

extern VOID zpbrfs_(char* uplo, integer* n, integer* kd, integer* nrhs, doublecomplex* ab, integer* ldab, doublecomplex* afb, integer* ldafb, doublecomplex* b, integer* ldb, doublecomplex* x, integer* ldx, doublereal* ferr, doublereal* berr, doublecomplex* work, doublereal* rwork, integer* info);


static VALUE
rblapack_zpbrfs(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_kd;
  integer kd; 
  VALUE rblapack_ab;
  doublecomplex *ab; 
  VALUE rblapack_afb;
  doublecomplex *afb; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_x;
  doublecomplex *x; 
  VALUE rblapack_ferr;
  doublereal *ferr; 
  VALUE rblapack_berr;
  doublereal *berr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_x_out__;
  doublecomplex *x_out__;
  doublecomplex *work;
  doublereal *rwork;

  integer ldab;
  integer n;
  integer ldafb;
  integer ldb;
  integer nrhs;
  integer ldx;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info, x = NumRu::Lapack.zpbrfs( uplo, kd, ab, afb, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZPBRFS improves the computed solution to a system of linear\n*  equations when the coefficient matrix is Hermitian positive definite\n*  and banded, and provides error bounds and backward error estimates\n*  for the solution.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  KD      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrices B and X.  NRHS >= 0.\n*\n*  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)\n*          The upper or lower triangle of the Hermitian band matrix A,\n*          stored in the first KD+1 rows of the array.  The j-th column\n*          of A is stored in the j-th column of the array AB as follows:\n*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KD+1.\n*\n*  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)\n*          The triangular factor U or L from the Cholesky factorization\n*          A = U**H*U or A = L*L**H of the band matrix A as computed by\n*          ZPBTRF, in the same storage format as A (see AB).\n*\n*  LDAFB   (input) INTEGER\n*          The leading dimension of the array AFB.  LDAFB >= KD+1.\n*\n*  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)\n*          The right hand side matrix B.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)\n*          On entry, the solution matrix X, as computed by ZPBTRS.\n*          On exit, the improved solution matrix X.\n*\n*  LDX     (input) INTEGER\n*          The leading dimension of the array X.  LDX >= max(1,N).\n*\n*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n*          The estimated forward error bound for each solution vector\n*          X(j) (the j-th column of the solution matrix X).\n*          If XTRUE is the true solution corresponding to X(j), FERR(j)\n*          is an estimated upper bound for the magnitude of the largest\n*          element in (X(j) - XTRUE) divided by the magnitude of the\n*          largest element in X(j).  The estimate is as reliable as\n*          the estimate for RCOND, and is almost always a slight\n*          overestimate of the true error.\n*\n*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n*          The componentwise relative backward error of each solution\n*          vector X(j) (i.e., the smallest relative change in\n*          any element of A or B that makes X(j) an exact solution).\n*\n*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*\n*  Internal Parameters\n*  ===================\n*\n*  ITMAX is the maximum number of steps of iterative refinement.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  ferr, berr, info, x = NumRu::Lapack.zpbrfs( uplo, kd, ab, afb, b, x, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_uplo = argv[0];
  rblapack_kd = argv[1];
  rblapack_ab = argv[2];
  rblapack_afb = argv[3];
  rblapack_b = argv[4];
  rblapack_x = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_DCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_DCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, doublecomplex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (5th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  kd = NUM2INT(rblapack_kd);
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (6th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 2)
    rb_raise(rb_eArgError, "rank of x (6th argument) must be %d", 2);
  ldx = NA_SHAPE0(rblapack_x);
  if (NA_SHAPE1(rblapack_x) != nrhs)
    rb_raise(rb_eRuntimeError, "shape 1 of x must be the same as shape 1 of b");
  if (NA_TYPE(rblapack_x) != NA_DCOMPLEX)
    rblapack_x = na_change_type(rblapack_x, NA_DCOMPLEX);
  x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
  if (!NA_IsNArray(rblapack_afb))
    rb_raise(rb_eArgError, "afb (4th argument) must be NArray");
  if (NA_RANK(rblapack_afb) != 2)
    rb_raise(rb_eArgError, "rank of afb (4th argument) must be %d", 2);
  ldafb = NA_SHAPE0(rblapack_afb);
  if (NA_SHAPE1(rblapack_afb) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of afb must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_afb) != NA_DCOMPLEX)
    rblapack_afb = na_change_type(rblapack_afb, NA_DCOMPLEX);
  afb = NA_PTR_TYPE(rblapack_afb, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_ferr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  ferr = NA_PTR_TYPE(rblapack_ferr, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = nrhs;
    rblapack_berr = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  berr = NA_PTR_TYPE(rblapack_berr, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldx;
    shape[1] = nrhs;
    rblapack_x_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  x_out__ = NA_PTR_TYPE(rblapack_x_out__, doublecomplex*);
  MEMCPY(x_out__, x, doublecomplex, NA_TOTAL(rblapack_x));
  rblapack_x = rblapack_x_out__;
  x = x_out__;
  work = ALLOC_N(doublecomplex, (2*n));
  rwork = ALLOC_N(doublereal, (n));

  zpbrfs_(&uplo, &n, &kd, &nrhs, ab, &ldab, afb, &ldafb, b, &ldb, x, &ldx, ferr, berr, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}

void
init_lapack_zpbrfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zpbrfs", rblapack_zpbrfs, -1);
}