1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
#include "rb_lapack.h"
extern VOID zunmbr_(char* vect, char* side, char* trans, integer* m, integer* n, integer* k, doublecomplex* a, integer* lda, doublecomplex* tau, doublecomplex* c, integer* ldc, doublecomplex* work, integer* lwork, integer* info);
static VALUE
rblapack_zunmbr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_vect;
char vect;
VALUE rblapack_side;
char side;
VALUE rblapack_trans;
char trans;
VALUE rblapack_m;
integer m;
VALUE rblapack_k;
integer k;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_tau;
doublecomplex *tau;
VALUE rblapack_c;
doublecomplex *c;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_work;
doublecomplex *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_c_out__;
doublecomplex *c_out__;
integer lda;
integer ldc;
integer n;
integer nq;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n work, info, c = NumRu::Lapack.zunmbr( vect, side, trans, m, k, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C\n* with\n* SIDE = 'L' SIDE = 'R'\n* TRANS = 'N': Q * C C * Q\n* TRANS = 'C': Q**H * C C * Q**H\n*\n* If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C\n* with\n* SIDE = 'L' SIDE = 'R'\n* TRANS = 'N': P * C C * P\n* TRANS = 'C': P**H * C C * P**H\n*\n* Here Q and P**H are the unitary matrices determined by ZGEBRD when\n* reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q\n* and P**H are defined as products of elementary reflectors H(i) and\n* G(i) respectively.\n*\n* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the\n* order of the unitary matrix Q or P**H that is applied.\n*\n* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:\n* if nq >= k, Q = H(1) H(2) . . . H(k);\n* if nq < k, Q = H(1) H(2) . . . H(nq-1).\n*\n* If VECT = 'P', A is assumed to have been a K-by-NQ matrix:\n* if k < nq, P = G(1) G(2) . . . G(k);\n* if k >= nq, P = G(1) G(2) . . . G(nq-1).\n*\n\n* Arguments\n* =========\n*\n* VECT (input) CHARACTER*1\n* = 'Q': apply Q or Q**H;\n* = 'P': apply P or P**H.\n*\n* SIDE (input) CHARACTER*1\n* = 'L': apply Q, Q**H, P or P**H from the Left;\n* = 'R': apply Q, Q**H, P or P**H from the Right.\n*\n* TRANS (input) CHARACTER*1\n* = 'N': No transpose, apply Q or P;\n* = 'C': Conjugate transpose, apply Q**H or P**H.\n*\n* M (input) INTEGER\n* The number of rows of the matrix C. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix C. N >= 0.\n*\n* K (input) INTEGER\n* If VECT = 'Q', the number of columns in the original\n* matrix reduced by ZGEBRD.\n* If VECT = 'P', the number of rows in the original\n* matrix reduced by ZGEBRD.\n* K >= 0.\n*\n* A (input) COMPLEX*16 array, dimension\n* (LDA,min(nq,K)) if VECT = 'Q'\n* (LDA,nq) if VECT = 'P'\n* The vectors which define the elementary reflectors H(i) and\n* G(i), whose products determine the matrices Q and P, as\n* returned by ZGEBRD.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A.\n* If VECT = 'Q', LDA >= max(1,nq);\n* if VECT = 'P', LDA >= max(1,min(nq,K)).\n*\n* TAU (input) COMPLEX*16 array, dimension (min(nq,K))\n* TAU(i) must contain the scalar factor of the elementary\n* reflector H(i) or G(i) which determines Q or P, as returned\n* by ZGEBRD in the array argument TAUQ or TAUP.\n*\n* C (input/output) COMPLEX*16 array, dimension (LDC,N)\n* On entry, the M-by-N matrix C.\n* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q\n* or P*C or P**H*C or C*P or C*P**H.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >= max(1,M).\n*\n* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* If SIDE = 'L', LWORK >= max(1,N);\n* if SIDE = 'R', LWORK >= max(1,M);\n* if N = 0 or M = 0, LWORK >= 1.\n* For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',\n* and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the\n* optimal blocksize. (NB = 0 if M = 0 or N = 0.)\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN\n CHARACTER TRANST\n INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n INTEGER ILAENV\n EXTERNAL LSAME, ILAENV\n* ..\n* .. External Subroutines ..\n EXTERNAL XERBLA, ZUNMLQ, ZUNMQR\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX, MIN\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n work, info, c = NumRu::Lapack.zunmbr( vect, side, trans, m, k, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_vect = argv[0];
rblapack_side = argv[1];
rblapack_trans = argv[2];
rblapack_m = argv[3];
rblapack_k = argv[4];
rblapack_a = argv[5];
rblapack_tau = argv[6];
rblapack_c = argv[7];
if (argc == 9) {
rblapack_lwork = argv[8];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
vect = StringValueCStr(rblapack_vect)[0];
trans = StringValueCStr(rblapack_trans)[0];
k = NUM2INT(rblapack_k);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (8th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (8th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
n = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_DCOMPLEX)
rblapack_c = na_change_type(rblapack_c, NA_DCOMPLEX);
c = NA_PTR_TYPE(rblapack_c, doublecomplex*);
side = StringValueCStr(rblapack_side)[0];
m = NUM2INT(rblapack_m);
if (rblapack_lwork == Qnil)
lwork = lsame_(&side,"L") ? n : lsame_(&side,"R") ? m : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
nq = lsame_(&side,"L") ? m : lsame_(&side,"R") ? n : 0;
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (6th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (6th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != (MIN(nq,k)))
rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", MIN(nq,k));
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
if (!NA_IsNArray(rblapack_tau))
rb_raise(rb_eArgError, "tau (7th argument) must be NArray");
if (NA_RANK(rblapack_tau) != 1)
rb_raise(rb_eArgError, "rank of tau (7th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_tau) != (MIN(nq,k)))
rb_raise(rb_eRuntimeError, "shape 0 of tau must be %d", MIN(nq,k));
if (NA_TYPE(rblapack_tau) != NA_DCOMPLEX)
rblapack_tau = na_change_type(rblapack_tau, NA_DCOMPLEX);
tau = NA_PTR_TYPE(rblapack_tau, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, doublecomplex*);
MEMCPY(c_out__, c, doublecomplex, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
zunmbr_(&vect, &side, &trans, &m, &n, &k, a, &lda, tau, c, &ldc, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_work, rblapack_info, rblapack_c);
}
void
init_lapack_zunmbr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zunmbr", rblapack_zunmbr, -1);
}
|