1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
---
:name: cgeqrf
:md5sum: 636ef6ebfc4f9933d33fe673fb47e58d
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- tau:
:type: complex
:intent: output
:dims:
- MIN(m,n)
- work:
:type: complex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CGEQRF computes a QR factorization of a complex M-by-N matrix A:\n\
* A = Q * R.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the M-by-N matrix A.\n\
* On exit, the elements on and above the diagonal of the array\n\
* contain the min(M,N)-by-N upper trapezoidal matrix R (R is\n\
* upper triangular if m >= n); the elements below the diagonal,\n\
* with the array TAU, represent the unitary matrix Q as a\n\
* product of min(m,n) elementary reflectors (see Further\n\
* Details).\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* TAU (output) COMPLEX array, dimension (min(M,N))\n\
* The scalar factors of the elementary reflectors (see Further\n\
* Details).\n\
*\n\
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK >= max(1,N).\n\
* For optimum performance LWORK >= N*NB, where NB is\n\
* the optimal blocksize.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrix Q is represented as a product of elementary reflectors\n\
*\n\
* Q = H(1) H(2) . . . H(k), where k = min(m,n).\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H(i) = I - tau * v * v'\n\
*\n\
* where tau is a complex scalar, and v is a complex vector with\n\
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),\n\
* and tau in TAU(i).\n\
*\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL LQUERY\n INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,\n $ NBMIN, NX\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL CGEQR2, CLARFB, CLARFT, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX, MIN\n\
* ..\n\
* .. External Functions ..\n INTEGER ILAENV\n EXTERNAL ILAENV\n\
* ..\n"
|