File: cgglse

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (157 lines) | stat: -rw-r--r-- 5,192 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
--- 
:name: cgglse
:md5sum: 76651864baa26d2d1471eeda133757a5
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- p: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- c: 
    :type: complex
    :intent: input/output
    :dims: 
    - m
- d: 
    :type: complex
    :intent: input/output
    :dims: 
    - p
- x: 
    :type: complex
    :intent: output
    :dims: 
    - n
- work: 
    :type: complex
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: m+n+p
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CGGLSE solves the linear equality-constrained least squares (LSE)\n\
  *  problem:\n\
  *\n\
  *          minimize || c - A*x ||_2   subject to   B*x = d\n\
  *\n\
  *  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given\n\
  *  M-vector, and d is a given P-vector. It is assumed that\n\
  *  P <= N <= M+P, and\n\
  *\n\
  *           rank(B) = P and  rank( (A) ) = N.\n\
  *                                ( (B) )\n\
  *\n\
  *  These conditions ensure that the LSE problem has a unique solution,\n\
  *  which is obtained using a generalized RQ factorization of the\n\
  *  matrices (B, A) given by\n\
  *\n\
  *     B = (0 R)*Q,   A = Z*T*Q.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrices A and B. N >= 0.\n\
  *\n\
  *  P       (input) INTEGER\n\
  *          The number of rows of the matrix B. 0 <= P <= N <= M+P.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          On entry, the M-by-N matrix A.\n\
  *          On exit, the elements on and above the diagonal of the array\n\
  *          contain the min(M,N)-by-N upper trapezoidal matrix T.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1,M).\n\
  *\n\
  *  B       (input/output) COMPLEX array, dimension (LDB,N)\n\
  *          On entry, the P-by-N matrix B.\n\
  *          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)\n\
  *          contains the P-by-P upper triangular matrix R.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1,P).\n\
  *\n\
  *  C       (input/output) COMPLEX array, dimension (M)\n\
  *          On entry, C contains the right hand side vector for the\n\
  *          least squares part of the LSE problem.\n\
  *          On exit, the residual sum of squares for the solution\n\
  *          is given by the sum of squares of elements N-P+1 to M of\n\
  *          vector C.\n\
  *\n\
  *  D       (input/output) COMPLEX array, dimension (P)\n\
  *          On entry, D contains the right hand side vector for the\n\
  *          constrained equation.\n\
  *          On exit, D is destroyed.\n\
  *\n\
  *  X       (output) COMPLEX array, dimension (N)\n\
  *          On exit, X is the solution of the LSE problem.\n\
  *\n\
  *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK. LWORK >= max(1,M+N+P).\n\
  *          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,\n\
  *          where NB is an upper bound for the optimal blocksizes for\n\
  *          CGEQRF, CGERQF, CUNMQR and CUNMRQ.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          = 1:  the upper triangular factor R associated with B in the\n\
  *                generalized RQ factorization of the pair (B, A) is\n\
  *                singular, so that rank(B) < P; the least squares\n\
  *                solution could not be computed.\n\
  *          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor\n\
  *                T associated with A in the generalized RQ factorization\n\
  *                of the pair (B, A) is singular, so that\n\
  *                rank( (A) ) < N; the least squares solution could not\n\
  *                    ( (B) )\n\
  *                be computed.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"