File: cgttrf

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (97 lines) | stat: -rw-r--r-- 3,131 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
--- 
:name: cgttrf
:md5sum: 113d7a17d7e56d36b76493ceda5cfa3e
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- dl: 
    :type: complex
    :intent: input/output
    :dims: 
    - n-1
- d: 
    :type: complex
    :intent: input/output
    :dims: 
    - n
- du: 
    :type: complex
    :intent: input/output
    :dims: 
    - n-1
- du2: 
    :type: complex
    :intent: output
    :dims: 
    - n-2
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CGTTRF( N, DL, D, DU, DU2, IPIV, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CGTTRF computes an LU factorization of a complex tridiagonal matrix A\n\
  *  using elimination with partial pivoting and row interchanges.\n\
  *\n\
  *  The factorization has the form\n\
  *     A = L * U\n\
  *  where L is a product of permutation and unit lower bidiagonal\n\
  *  matrices and U is upper triangular with nonzeros in only the main\n\
  *  diagonal and first two superdiagonals.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.\n\
  *\n\
  *  DL      (input/output) COMPLEX array, dimension (N-1)\n\
  *          On entry, DL must contain the (n-1) sub-diagonal elements of\n\
  *          A.\n\
  *\n\
  *          On exit, DL is overwritten by the (n-1) multipliers that\n\
  *          define the matrix L from the LU factorization of A.\n\
  *\n\
  *  D       (input/output) COMPLEX array, dimension (N)\n\
  *          On entry, D must contain the diagonal elements of A.\n\
  *\n\
  *          On exit, D is overwritten by the n diagonal elements of the\n\
  *          upper triangular matrix U from the LU factorization of A.\n\
  *\n\
  *  DU      (input/output) COMPLEX array, dimension (N-1)\n\
  *          On entry, DU must contain the (n-1) super-diagonal elements\n\
  *          of A.\n\
  *\n\
  *          On exit, DU is overwritten by the (n-1) elements of the first\n\
  *          super-diagonal of U.\n\
  *\n\
  *  DU2     (output) COMPLEX array, dimension (N-2)\n\
  *          On exit, DU2 is overwritten by the (n-2) elements of the\n\
  *          second super-diagonal of U.\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (N)\n\
  *          The pivot indices; for 1 <= i <= n, row i of the matrix was\n\
  *          interchanged with row IPIV(i).  IPIV(i) will always be either\n\
  *          i or i+1; IPIV(i) = i indicates a row interchange was not\n\
  *          required.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -k, the k-th argument had an illegal value\n\
  *          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization\n\
  *                has been completed, but the factor U is exactly\n\
  *                singular, and division by zero will occur if it is used\n\
  *                to solve a system of equations.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"