File: cheevx

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (225 lines) | stat: -rw-r--r-- 8,065 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
--- 
:name: cheevx
:md5sum: 16e52f5a970fe326d98bf7b6bca8e538
:category: :subroutine
:arguments: 
- jobz: 
    :type: char
    :intent: input
- range: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- vl: 
    :type: real
    :intent: input
- vu: 
    :type: real
    :intent: input
- il: 
    :type: integer
    :intent: input
- iu: 
    :type: integer
    :intent: input
- abstol: 
    :type: real
    :intent: input
- m: 
    :type: integer
    :intent: output
- w: 
    :type: real
    :intent: output
    :dims: 
    - n
- z: 
    :type: complex
    :intent: output
    :dims: 
    - ldz
    - MAX(1,m)
- ldz: 
    :type: integer
    :intent: input
- work: 
    :type: complex
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: "n<=1 ? 1 : 2*n"
- rwork: 
    :type: real
    :intent: workspace
    :dims: 
    - 7*n
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - 5*n
- ifail: 
    :type: integer
    :intent: output
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
  m: "lsame_(&range,\"A\") ? n : lsame_(&range,\"I\") ? iu-il+1 : 0"
:fortran_help: "      SUBROUTINE CHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CHEEVX computes selected eigenvalues and, optionally, eigenvectors\n\
  *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can\n\
  *  be selected by specifying either a range of values or a range of\n\
  *  indices for the desired eigenvalues.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBZ    (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only;\n\
  *          = 'V':  Compute eigenvalues and eigenvectors.\n\
  *\n\
  *  RANGE   (input) CHARACTER*1\n\
  *          = 'A': all eigenvalues will be found.\n\
  *          = 'V': all eigenvalues in the half-open interval (VL,VU]\n\
  *                 will be found.\n\
  *          = 'I': the IL-th through IU-th eigenvalues will be found.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA, N)\n\
  *          On entry, the Hermitian matrix A.  If UPLO = 'U', the\n\
  *          leading N-by-N upper triangular part of A contains the\n\
  *          upper triangular part of the matrix A.  If UPLO = 'L',\n\
  *          the leading N-by-N lower triangular part of A contains\n\
  *          the lower triangular part of the matrix A.\n\
  *          On exit, the lower triangle (if UPLO='L') or the upper\n\
  *          triangle (if UPLO='U') of A, including the diagonal, is\n\
  *          destroyed.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  VL      (input) REAL\n\
  *  VU      (input) REAL\n\
  *          If RANGE='V', the lower and upper bounds of the interval to\n\
  *          be searched for eigenvalues. VL < VU.\n\
  *          Not referenced if RANGE = 'A' or 'I'.\n\
  *\n\
  *  IL      (input) INTEGER\n\
  *  IU      (input) INTEGER\n\
  *          If RANGE='I', the indices (in ascending order) of the\n\
  *          smallest and largest eigenvalues to be returned.\n\
  *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n\
  *          Not referenced if RANGE = 'A' or 'V'.\n\
  *\n\
  *  ABSTOL  (input) REAL\n\
  *          The absolute error tolerance for the eigenvalues.\n\
  *          An approximate eigenvalue is accepted as converged\n\
  *          when it is determined to lie in an interval [a,b]\n\
  *          of width less than or equal to\n\
  *\n\
  *                  ABSTOL + EPS *   max( |a|,|b| ) ,\n\
  *\n\
  *          where EPS is the machine precision.  If ABSTOL is less than\n\
  *          or equal to zero, then  EPS*|T|  will be used in its place,\n\
  *          where |T| is the 1-norm of the tridiagonal matrix obtained\n\
  *          by reducing A to tridiagonal form.\n\
  *\n\
  *          Eigenvalues will be computed most accurately when ABSTOL is\n\
  *          set to twice the underflow threshold 2*SLAMCH('S'), not zero.\n\
  *          If this routine returns with INFO>0, indicating that some\n\
  *          eigenvectors did not converge, try setting ABSTOL to\n\
  *          2*SLAMCH('S').\n\
  *\n\
  *          See \"Computing Small Singular Values of Bidiagonal Matrices\n\
  *          with Guaranteed High Relative Accuracy,\" by Demmel and\n\
  *          Kahan, LAPACK Working Note #3.\n\
  *\n\
  *  M       (output) INTEGER\n\
  *          The total number of eigenvalues found.  0 <= M <= N.\n\
  *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n\
  *\n\
  *  W       (output) REAL array, dimension (N)\n\
  *          On normal exit, the first M elements contain the selected\n\
  *          eigenvalues in ascending order.\n\
  *\n\
  *  Z       (output) COMPLEX array, dimension (LDZ, max(1,M))\n\
  *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z\n\
  *          contain the orthonormal eigenvectors of the matrix A\n\
  *          corresponding to the selected eigenvalues, with the i-th\n\
  *          column of Z holding the eigenvector associated with W(i).\n\
  *          If an eigenvector fails to converge, then that column of Z\n\
  *          contains the latest approximation to the eigenvector, and the\n\
  *          index of the eigenvector is returned in IFAIL.\n\
  *          If JOBZ = 'N', then Z is not referenced.\n\
  *          Note: the user must ensure that at least max(1,M) columns are\n\
  *          supplied in the array Z; if RANGE = 'V', the exact value of M\n\
  *          is not known in advance and an upper bound must be used.\n\
  *\n\
  *  LDZ     (input) INTEGER\n\
  *          The leading dimension of the array Z.  LDZ >= 1, and if\n\
  *          JOBZ = 'V', LDZ >= max(1,N).\n\
  *\n\
  *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The length of the array WORK.  LWORK >= 1, when N <= 1;\n\
  *          otherwise 2*N.\n\
  *          For optimal efficiency, LWORK >= (NB+1)*N,\n\
  *          where NB is the max of the blocksize for CHETRD and for\n\
  *          CUNMTR as returned by ILAENV.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  RWORK   (workspace) REAL array, dimension (7*N)\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (5*N)\n\
  *\n\
  *  IFAIL   (output) INTEGER array, dimension (N)\n\
  *          If JOBZ = 'V', then if INFO = 0, the first M elements of\n\
  *          IFAIL are zero.  If INFO > 0, then IFAIL contains the\n\
  *          indices of the eigenvectors that failed to converge.\n\
  *          If JOBZ = 'N', then IFAIL is not referenced.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, then i eigenvectors failed to converge.\n\
  *                Their indices are stored in array IFAIL.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"