1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
---
:name: clabrd
:md5sum: 6ef5300c03ff0c0ef1c02f7f2da050d5
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- nb:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- d:
:type: real
:intent: output
:dims:
- MAX(1,nb)
- e:
:type: real
:intent: output
:dims:
- MAX(1,nb)
- tauq:
:type: complex
:intent: output
:dims:
- MAX(1,nb)
- taup:
:type: complex
:intent: output
:dims:
- MAX(1,nb)
- x:
:type: complex
:intent: output
:dims:
- ldx
- MAX(1,nb)
- ldx:
:type: integer
:intent: input
- y:
:type: complex
:intent: output
:dims:
- ldy
- MAX(1,nb)
- ldy:
:type: integer
:intent: input
:substitutions:
ldx: MAX(1,m)
ldy: MAX(1,n)
:fortran_help: " SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, LDY )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLABRD reduces the first NB rows and columns of a complex general\n\
* m by n matrix A to upper or lower real bidiagonal form by a unitary\n\
* transformation Q' * A * P, and returns the matrices X and Y which\n\
* are needed to apply the transformation to the unreduced part of A.\n\
*\n\
* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower\n\
* bidiagonal form.\n\
*\n\
* This is an auxiliary routine called by CGEBRD\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows in the matrix A.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns in the matrix A.\n\
*\n\
* NB (input) INTEGER\n\
* The number of leading rows and columns of A to be reduced.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the m by n general matrix to be reduced.\n\
* On exit, the first NB rows and columns of the matrix are\n\
* overwritten; the rest of the array is unchanged.\n\
* If m >= n, elements on and below the diagonal in the first NB\n\
* columns, with the array TAUQ, represent the unitary\n\
* matrix Q as a product of elementary reflectors; and\n\
* elements above the diagonal in the first NB rows, with the\n\
* array TAUP, represent the unitary matrix P as a product\n\
* of elementary reflectors.\n\
* If m < n, elements below the diagonal in the first NB\n\
* columns, with the array TAUQ, represent the unitary\n\
* matrix Q as a product of elementary reflectors, and\n\
* elements on and above the diagonal in the first NB rows,\n\
* with the array TAUP, represent the unitary matrix P as\n\
* a product of elementary reflectors.\n\
* See Further Details.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* D (output) REAL array, dimension (NB)\n\
* The diagonal elements of the first NB rows and columns of\n\
* the reduced matrix. D(i) = A(i,i).\n\
*\n\
* E (output) REAL array, dimension (NB)\n\
* The off-diagonal elements of the first NB rows and columns of\n\
* the reduced matrix.\n\
*\n\
* TAUQ (output) COMPLEX array dimension (NB)\n\
* The scalar factors of the elementary reflectors which\n\
* represent the unitary matrix Q. See Further Details.\n\
*\n\
* TAUP (output) COMPLEX array, dimension (NB)\n\
* The scalar factors of the elementary reflectors which\n\
* represent the unitary matrix P. See Further Details.\n\
*\n\
* X (output) COMPLEX array, dimension (LDX,NB)\n\
* The m-by-nb matrix X required to update the unreduced part\n\
* of A.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,M).\n\
*\n\
* Y (output) COMPLEX array, dimension (LDY,NB)\n\
* The n-by-nb matrix Y required to update the unreduced part\n\
* of A.\n\
*\n\
* LDY (input) INTEGER\n\
* The leading dimension of the array Y. LDY >= max(1,N).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrices Q and P are represented as products of elementary\n\
* reflectors:\n\
*\n\
* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)\n\
*\n\
* Each H(i) and G(i) has the form:\n\
*\n\
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'\n\
*\n\
* where tauq and taup are complex scalars, and v and u are complex\n\
* vectors.\n\
*\n\
* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in\n\
* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in\n\
* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
*\n\
* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in\n\
* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in\n\
* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
*\n\
* The elements of the vectors v and u together form the m-by-nb matrix\n\
* V and the nb-by-n matrix U' which are needed, with X and Y, to apply\n\
* the transformation to the unreduced part of the matrix, using a block\n\
* update of the form: A := A - V*Y' - X*U'.\n\
*\n\
* The contents of A on exit are illustrated by the following examples\n\
* with nb = 2:\n\
*\n\
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):\n\
*\n\
* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )\n\
* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )\n\
* ( v1 v2 a a a ) ( v1 1 a a a a )\n\
* ( v1 v2 a a a ) ( v1 v2 a a a a )\n\
* ( v1 v2 a a a ) ( v1 v2 a a a a )\n\
* ( v1 v2 a a a )\n\
*\n\
* where a denotes an element of the original matrix which is unchanged,\n\
* vi denotes an element of the vector defining H(i), and ui an element\n\
* of the vector defining G(i).\n\
*\n\
* =====================================================================\n\
*\n"
|