File: clabrd

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (187 lines) | stat: -rw-r--r-- 6,521 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
--- 
:name: clabrd
:md5sum: 6ef5300c03ff0c0ef1c02f7f2da050d5
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- nb: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,nb)
- e: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,nb)
- tauq: 
    :type: complex
    :intent: output
    :dims: 
    - MAX(1,nb)
- taup: 
    :type: complex
    :intent: output
    :dims: 
    - MAX(1,nb)
- x: 
    :type: complex
    :intent: output
    :dims: 
    - ldx
    - MAX(1,nb)
- ldx: 
    :type: integer
    :intent: input
- y: 
    :type: complex
    :intent: output
    :dims: 
    - ldy
    - MAX(1,nb)
- ldy: 
    :type: integer
    :intent: input
:substitutions: 
  ldx: MAX(1,m)
  ldy: MAX(1,n)
:fortran_help: "      SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, LDY )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLABRD reduces the first NB rows and columns of a complex general\n\
  *  m by n matrix A to upper or lower real bidiagonal form by a unitary\n\
  *  transformation Q' * A * P, and returns the matrices X and Y which\n\
  *  are needed to apply the transformation to the unreduced part of A.\n\
  *\n\
  *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower\n\
  *  bidiagonal form.\n\
  *\n\
  *  This is an auxiliary routine called by CGEBRD\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows in the matrix A.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns in the matrix A.\n\
  *\n\
  *  NB      (input) INTEGER\n\
  *          The number of leading rows and columns of A to be reduced.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          On entry, the m by n general matrix to be reduced.\n\
  *          On exit, the first NB rows and columns of the matrix are\n\
  *          overwritten; the rest of the array is unchanged.\n\
  *          If m >= n, elements on and below the diagonal in the first NB\n\
  *            columns, with the array TAUQ, represent the unitary\n\
  *            matrix Q as a product of elementary reflectors; and\n\
  *            elements above the diagonal in the first NB rows, with the\n\
  *            array TAUP, represent the unitary matrix P as a product\n\
  *            of elementary reflectors.\n\
  *          If m < n, elements below the diagonal in the first NB\n\
  *            columns, with the array TAUQ, represent the unitary\n\
  *            matrix Q as a product of elementary reflectors, and\n\
  *            elements on and above the diagonal in the first NB rows,\n\
  *            with the array TAUP, represent the unitary matrix P as\n\
  *            a product of elementary reflectors.\n\
  *          See Further Details.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  D       (output) REAL array, dimension (NB)\n\
  *          The diagonal elements of the first NB rows and columns of\n\
  *          the reduced matrix.  D(i) = A(i,i).\n\
  *\n\
  *  E       (output) REAL array, dimension (NB)\n\
  *          The off-diagonal elements of the first NB rows and columns of\n\
  *          the reduced matrix.\n\
  *\n\
  *  TAUQ    (output) COMPLEX array dimension (NB)\n\
  *          The scalar factors of the elementary reflectors which\n\
  *          represent the unitary matrix Q. See Further Details.\n\
  *\n\
  *  TAUP    (output) COMPLEX array, dimension (NB)\n\
  *          The scalar factors of the elementary reflectors which\n\
  *          represent the unitary matrix P. See Further Details.\n\
  *\n\
  *  X       (output) COMPLEX array, dimension (LDX,NB)\n\
  *          The m-by-nb matrix X required to update the unreduced part\n\
  *          of A.\n\
  *\n\
  *  LDX     (input) INTEGER\n\
  *          The leading dimension of the array X. LDX >= max(1,M).\n\
  *\n\
  *  Y       (output) COMPLEX array, dimension (LDY,NB)\n\
  *          The n-by-nb matrix Y required to update the unreduced part\n\
  *          of A.\n\
  *\n\
  *  LDY     (input) INTEGER\n\
  *          The leading dimension of the array Y. LDY >= max(1,N).\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The matrices Q and P are represented as products of elementary\n\
  *  reflectors:\n\
  *\n\
  *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)\n\
  *\n\
  *  Each H(i) and G(i) has the form:\n\
  *\n\
  *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'\n\
  *\n\
  *  where tauq and taup are complex scalars, and v and u are complex\n\
  *  vectors.\n\
  *\n\
  *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in\n\
  *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in\n\
  *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
  *\n\
  *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in\n\
  *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in\n\
  *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
  *\n\
  *  The elements of the vectors v and u together form the m-by-nb matrix\n\
  *  V and the nb-by-n matrix U' which are needed, with X and Y, to apply\n\
  *  the transformation to the unreduced part of the matrix, using a block\n\
  *  update of the form:  A := A - V*Y' - X*U'.\n\
  *\n\
  *  The contents of A on exit are illustrated by the following examples\n\
  *  with nb = 2:\n\
  *\n\
  *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):\n\
  *\n\
  *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )\n\
  *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )\n\
  *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )\n\
  *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )\n\
  *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )\n\
  *    (  v1  v2  a   a   a  )\n\
  *\n\
  *  where a denotes an element of the original matrix which is unchanged,\n\
  *  vi denotes an element of the vector defining H(i), and ui an element\n\
  *  of the vector defining G(i).\n\
  *\n\
  *  =====================================================================\n\
  *\n"