1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
|
---
:name: clanht
:md5sum: c658a5158529cfe7a4c7c521584dcd71
:category: :function
:type: real
:arguments:
- norm:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- d:
:type: real
:intent: input
:dims:
- n
- e:
:type: complex
:intent: input
:dims:
- n-1
:substitutions: {}
:fortran_help: " REAL FUNCTION CLANHT( NORM, N, D, E )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLANHT returns the value of the one norm, or the Frobenius norm, or\n\
* the infinity norm, or the element of largest absolute value of a\n\
* complex Hermitian tridiagonal matrix A.\n\
*\n\
* Description\n\
* ===========\n\
*\n\
* CLANHT returns the value\n\
*\n\
* CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
* (\n\
* ( norm1(A), NORM = '1', 'O' or 'o'\n\
* (\n\
* ( normI(A), NORM = 'I' or 'i'\n\
* (\n\
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n\
*\n\
* where norm1 denotes the one norm of a matrix (maximum column sum),\n\
* normI denotes the infinity norm of a matrix (maximum row sum) and\n\
* normF denotes the Frobenius norm of a matrix (square root of sum of\n\
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* NORM (input) CHARACTER*1\n\
* Specifies the value to be returned in CLANHT as described\n\
* above.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0. When N = 0, CLANHT is\n\
* set to zero.\n\
*\n\
* D (input) REAL array, dimension (N)\n\
* The diagonal elements of A.\n\
*\n\
* E (input) COMPLEX array, dimension (N-1)\n\
* The (n-1) sub-diagonal or super-diagonal elements of A.\n\
*\n\n\
* =====================================================================\n\
*\n"
|