1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
---
:name: cspsvx
:md5sum: 301c107c780567b960fdeac5c4653ffd
:category: :subroutine
:arguments:
- fact:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- ap:
:type: complex
:intent: input
:dims:
- n*(n+1)/2
- afp:
:type: complex
:intent: input/output
:dims:
- n*(n+1)/2
- ipiv:
:type: integer
:intent: input/output
:dims:
- n
- b:
:type: complex
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: complex
:intent: output
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- rcond:
:type: real
:intent: output
- ferr:
:type: real
:intent: output
:dims:
- nrhs
- berr:
:type: real
:intent: output
:dims:
- nrhs
- work:
:type: complex
:intent: workspace
:dims:
- 2*n
- rwork:
:type: real
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions:
ldx: MAX(1,n)
:fortran_help: " SUBROUTINE CSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CSPSVX uses the diagonal pivoting factorization A = U*D*U**T or\n\
* A = L*D*L**T to compute the solution to a complex system of linear\n\
* equations A * X = B, where A is an N-by-N symmetric matrix stored\n\
* in packed format and X and B are N-by-NRHS matrices.\n\
*\n\
* Error bounds on the solution and a condition estimate are also\n\
* provided.\n\
*\n\
* Description\n\
* ===========\n\
*\n\
* The following steps are performed:\n\
*\n\
* 1. If FACT = 'N', the diagonal pivoting method is used to factor A as\n\
* A = U * D * U**T, if UPLO = 'U', or\n\
* A = L * D * L**T, if UPLO = 'L',\n\
* where U (or L) is a product of permutation and unit upper (lower)\n\
* triangular matrices and D is symmetric and block diagonal with\n\
* 1-by-1 and 2-by-2 diagonal blocks.\n\
*\n\
* 2. If some D(i,i)=0, so that D is exactly singular, then the routine\n\
* returns with INFO = i. Otherwise, the factored form of A is used\n\
* to estimate the condition number of the matrix A. If the\n\
* reciprocal of the condition number is less than machine precision,\n\
* INFO = N+1 is returned as a warning, but the routine still goes on\n\
* to solve for X and compute error bounds as described below.\n\
*\n\
* 3. The system of equations is solved for X using the factored form\n\
* of A.\n\
*\n\
* 4. Iterative refinement is applied to improve the computed solution\n\
* matrix and calculate error bounds and backward error estimates\n\
* for it.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* FACT (input) CHARACTER*1\n\
* Specifies whether or not the factored form of A has been\n\
* supplied on entry.\n\
* = 'F': On entry, AFP and IPIV contain the factored form\n\
* of A. AP, AFP and IPIV will not be modified.\n\
* = 'N': The matrix A will be copied to AFP and factored.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The number of linear equations, i.e., the order of the\n\
* matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrices B and X. NRHS >= 0.\n\
*\n\
* AP (input) COMPLEX array, dimension (N*(N+1)/2)\n\
* The upper or lower triangle of the symmetric matrix A, packed\n\
* columnwise in a linear array. The j-th column of A is stored\n\
* in the array AP as follows:\n\
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n\
* See below for further details.\n\
*\n\
* AFP (input or output) COMPLEX array, dimension (N*(N+1)/2)\n\
* If FACT = 'F', then AFP is an input argument and on entry\n\
* contains the block diagonal matrix D and the multipliers used\n\
* to obtain the factor U or L from the factorization\n\
* A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as\n\
* a packed triangular matrix in the same storage format as A.\n\
*\n\
* If FACT = 'N', then AFP is an output argument and on exit\n\
* contains the block diagonal matrix D and the multipliers used\n\
* to obtain the factor U or L from the factorization\n\
* A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as\n\
* a packed triangular matrix in the same storage format as A.\n\
*\n\
* IPIV (input or output) INTEGER array, dimension (N)\n\
* If FACT = 'F', then IPIV is an input argument and on entry\n\
* contains details of the interchanges and the block structure\n\
* of D, as determined by CSPTRF.\n\
* If IPIV(k) > 0, then rows and columns k and IPIV(k) were\n\
* interchanged and D(k,k) is a 1-by-1 diagonal block.\n\
* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and\n\
* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)\n\
* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =\n\
* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were\n\
* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.\n\
*\n\
* If FACT = 'N', then IPIV is an output argument and on exit\n\
* contains details of the interchanges and the block structure\n\
* of D, as determined by CSPTRF.\n\
*\n\
* B (input) COMPLEX array, dimension (LDB,NRHS)\n\
* The N-by-NRHS right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (output) COMPLEX array, dimension (LDX,NRHS)\n\
* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* RCOND (output) REAL\n\
* The estimate of the reciprocal condition number of the matrix\n\
* A. If RCOND is less than the machine precision (in\n\
* particular, if RCOND = 0), the matrix is singular to working\n\
* precision. This condition is indicated by a return code of\n\
* INFO > 0.\n\
*\n\
* FERR (output) REAL array, dimension (NRHS)\n\
* The estimated forward error bound for each solution vector\n\
* X(j) (the j-th column of the solution matrix X).\n\
* If XTRUE is the true solution corresponding to X(j), FERR(j)\n\
* is an estimated upper bound for the magnitude of the largest\n\
* element in (X(j) - XTRUE) divided by the magnitude of the\n\
* largest element in X(j). The estimate is as reliable as\n\
* the estimate for RCOND, and is almost always a slight\n\
* overestimate of the true error.\n\
*\n\
* BERR (output) REAL array, dimension (NRHS)\n\
* The componentwise relative backward error of each solution\n\
* vector X(j) (i.e., the smallest relative change in\n\
* any element of A or B that makes X(j) an exact solution).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (2*N)\n\
*\n\
* RWORK (workspace) REAL array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, and i is\n\
* <= N: D(i,i) is exactly zero. The factorization\n\
* has been completed but the factor D is exactly\n\
* singular, so the solution and error bounds could\n\
* not be computed. RCOND = 0 is returned.\n\
* = N+1: D is nonsingular, but RCOND is less than machine\n\
* precision, meaning that the matrix is singular\n\
* to working precision. Nevertheless, the\n\
* solution and error bounds are computed because\n\
* there are a number of situations where the\n\
* computed solution can be more accurate than the\n\
* value of RCOND would suggest.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The packed storage scheme is illustrated by the following example\n\
* when N = 4, UPLO = 'U':\n\
*\n\
* Two-dimensional storage of the symmetric matrix A:\n\
*\n\
* a11 a12 a13 a14\n\
* a22 a23 a24\n\
* a33 a34 (aij = aji)\n\
* a44\n\
*\n\
* Packed storage of the upper triangle of A:\n\
*\n\
* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]\n\
*\n\
* =====================================================================\n\
*\n"
|