1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
---
:name: csysv
:md5sum: eb3a9b2a1e9a499c6394d402697b0f15
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- ipiv:
:type: integer
:intent: output
:dims:
- n
- b:
:type: complex
:intent: input/output
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- work:
:type: complex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CSYSV computes the solution to a complex system of linear equations\n\
* A * X = B,\n\
* where A is an N-by-N symmetric matrix and X and B are N-by-NRHS\n\
* matrices.\n\
*\n\
* The diagonal pivoting method is used to factor A as\n\
* A = U * D * U**T, if UPLO = 'U', or\n\
* A = L * D * L**T, if UPLO = 'L',\n\
* where U (or L) is a product of permutation and unit upper (lower)\n\
* triangular matrices, and D is symmetric and block diagonal with \n\
* 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then\n\
* used to solve the system of equations A * X = B.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The number of linear equations, i.e., the order of the\n\
* matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrix B. NRHS >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the symmetric matrix A. If UPLO = 'U', the leading\n\
* N-by-N upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading N-by-N lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
*\n\
* On exit, if INFO = 0, the block diagonal matrix D and the\n\
* multipliers used to obtain the factor U or L from the\n\
* factorization A = U*D*U**T or A = L*D*L**T as computed by\n\
* CSYTRF.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* IPIV (output) INTEGER array, dimension (N)\n\
* Details of the interchanges and the block structure of D, as\n\
* determined by CSYTRF. If IPIV(k) > 0, then rows and columns\n\
* k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1\n\
* diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,\n\
* then rows and columns k-1 and -IPIV(k) were interchanged and\n\
* D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and\n\
* IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and\n\
* -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2\n\
* diagonal block.\n\
*\n\
* B (input/output) COMPLEX array, dimension (LDB,NRHS)\n\
* On entry, the N-by-NRHS right hand side matrix B.\n\
* On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The length of WORK. LWORK >= 1, and for best performance\n\
* LWORK >= max(1,N*NB), where NB is the optimal blocksize for\n\
* CSYTRF.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, D(i,i) is exactly zero. The factorization\n\
* has been completed, but the block diagonal matrix D is\n\
* exactly singular, so the solution could not be computed.\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL LQUERY\n INTEGER LWKOPT, NB\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n INTEGER ILAENV\n EXTERNAL ILAENV, LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL CSYTRF, CSYTRS2, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX\n\
* ..\n"
|