File: ddisna

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (84 lines) | stat: -rw-r--r-- 3,034 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
--- 
:name: ddisna
:md5sum: ea986ef961f5fb1f30ce6fd9d42e776f
:category: :subroutine
:arguments: 
- job: 
    :type: char
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input
    :dims: 
    - m
- sep: 
    :type: doublereal
    :intent: output
    :dims: 
    - "lsame_(&job,\"E\") ? m : ((lsame_(&job,\"L\")) || (lsame_(&job,\"R\"))) ? MIN(m,n) : 0"
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DDISNA computes the reciprocal condition numbers for the eigenvectors\n\
  *  of a real symmetric or complex Hermitian matrix or for the left or\n\
  *  right singular vectors of a general m-by-n matrix. The reciprocal\n\
  *  condition number is the 'gap' between the corresponding eigenvalue or\n\
  *  singular value and the nearest other one.\n\
  *\n\
  *  The bound on the error, measured by angle in radians, in the I-th\n\
  *  computed vector is given by\n\
  *\n\
  *         DLAMCH( 'E' ) * ( ANORM / SEP( I ) )\n\
  *\n\
  *  where ANORM = 2-norm(A) = max( abs( D(j) ) ).  SEP(I) is not allowed\n\
  *  to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of\n\
  *  the error bound.\n\
  *\n\
  *  DDISNA may also be used to compute error bounds for eigenvectors of\n\
  *  the generalized symmetric definite eigenproblem.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOB     (input) CHARACTER*1\n\
  *          Specifies for which problem the reciprocal condition numbers\n\
  *          should be computed:\n\
  *          = 'E':  the eigenvectors of a symmetric/Hermitian matrix;\n\
  *          = 'L':  the left singular vectors of a general matrix;\n\
  *          = 'R':  the right singular vectors of a general matrix.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix. M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          If JOB = 'L' or 'R', the number of columns of the matrix,\n\
  *          in which case N >= 0. Ignored if JOB = 'E'.\n\
  *\n\
  *  D       (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E'\n\
  *                              dimension (min(M,N)) if JOB = 'L' or 'R'\n\
  *          The eigenvalues (if JOB = 'E') or singular values (if JOB =\n\
  *          'L' or 'R') of the matrix, in either increasing or decreasing\n\
  *          order. If singular values, they must be non-negative.\n\
  *\n\
  *  SEP     (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E'\n\
  *                               dimension (min(M,N)) if JOB = 'L' or 'R'\n\
  *          The reciprocal condition numbers of the vectors.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"