| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 
 | --- 
:name: dgelss
:md5sum: ba7d9a1ddb43c981531b0f82a0a65fd4
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - m
    - nrhs
    :outdims:
    - n
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- s: 
    :type: doublereal
    :intent: output
    :dims: 
    - MIN(m,n)
- rcond: 
    :type: doublereal
    :intent: input
- rank: 
    :type: integer
    :intent: output
- work: 
    :type: doublereal
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: 3*MIN(m,n) + MAX(MAX(2*MIN(m,n),MAX(m,n)),nrhs)
- info: 
    :type: integer
    :intent: output
:substitutions: 
  m: lda
  ldb: MAX(m,n)
:fortran_help: "      SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DGELSS computes the minimum norm solution to a real linear least\n\
  *  squares problem:\n\
  *\n\
  *  Minimize 2-norm(| b - A*x |).\n\
  *\n\
  *  using the singular value decomposition (SVD) of A. A is an M-by-N\n\
  *  matrix which may be rank-deficient.\n\
  *\n\
  *  Several right hand side vectors b and solution vectors x can be\n\
  *  handled in a single call; they are stored as the columns of the\n\
  *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix\n\
  *  X.\n\
  *\n\
  *  The effective rank of A is determined by treating as zero those\n\
  *  singular values which are less than RCOND times the largest singular\n\
  *  value.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A. M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A. N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrices B and X. NRHS >= 0.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
  *          On entry, the M-by-N matrix A.\n\
  *          On exit, the first min(m,n) rows of A are overwritten with\n\
  *          its right singular vectors, stored rowwise.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
  *          On entry, the M-by-NRHS right hand side matrix B.\n\
  *          On exit, B is overwritten by the N-by-NRHS solution\n\
  *          matrix X.  If m >= n and RANK = n, the residual\n\
  *          sum-of-squares for the solution in the i-th column is given\n\
  *          by the sum of squares of elements n+1:m in that column.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1,max(M,N)).\n\
  *\n\
  *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))\n\
  *          The singular values of A in decreasing order.\n\
  *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).\n\
  *\n\
  *  RCOND   (input) DOUBLE PRECISION\n\
  *          RCOND is used to determine the effective rank of A.\n\
  *          Singular values S(i) <= RCOND*S(1) are treated as zero.\n\
  *          If RCOND < 0, machine precision is used instead.\n\
  *\n\
  *  RANK    (output) INTEGER\n\
  *          The effective rank of A, i.e., the number of singular values\n\
  *          which are greater than RCOND*S(1).\n\
  *\n\
  *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK. LWORK >= 1, and also:\n\
  *          LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )\n\
  *          For good performance, LWORK should generally be larger.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          > 0:  the algorithm for computing the SVD failed to converge;\n\
  *                if INFO = i, i off-diagonal elements of an intermediate\n\
  *                bidiagonal form did not converge to zero.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"
 |