| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 
 | --- 
:name: dggbal
:md5sum: 24ff4f10c5e8790d8d13027b9337a32b
:category: :subroutine
:arguments: 
- job: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- ilo: 
    :type: integer
    :intent: output
- ihi: 
    :type: integer
    :intent: output
- lscale: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- rscale: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - "(lsame_(&job,\"S\")||lsame_(&job,\"B\")) ? MAX(1,6*n) : (lsame_(&job,\"N\")||lsame_(&job,\"P\")) ? 1 : 0"
- info: 
    :type: integer
    :intent: output
:substitutions: {}
:fortran_help: "      SUBROUTINE DGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DGGBAL balances a pair of general real matrices (A,B).  This\n\
  *  involves, first, permuting A and B by similarity transformations to\n\
  *  isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N\n\
  *  elements on the diagonal; and second, applying a diagonal similarity\n\
  *  transformation to rows and columns ILO to IHI to make the rows\n\
  *  and columns as close in norm as possible. Both steps are optional.\n\
  *\n\
  *  Balancing may reduce the 1-norm of the matrices, and improve the\n\
  *  accuracy of the computed eigenvalues and/or eigenvectors in the\n\
  *  generalized eigenvalue problem A*x = lambda*B*x.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOB     (input) CHARACTER*1\n\
  *          Specifies the operations to be performed on A and B:\n\
  *          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0\n\
  *                  and RSCALE(I) = 1.0 for i = 1,...,N.\n\
  *          = 'P':  permute only;\n\
  *          = 'S':  scale only;\n\
  *          = 'B':  both permute and scale.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A and B.  N >= 0.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
  *          On entry, the input matrix A.\n\
  *          On exit,  A is overwritten by the balanced matrix.\n\
  *          If JOB = 'N', A is not referenced.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1,N).\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)\n\
  *          On entry, the input matrix B.\n\
  *          On exit,  B is overwritten by the balanced matrix.\n\
  *          If JOB = 'N', B is not referenced.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1,N).\n\
  *\n\
  *  ILO     (output) INTEGER\n\
  *  IHI     (output) INTEGER\n\
  *          ILO and IHI are set to integers such that on exit\n\
  *          A(i,j) = 0 and B(i,j) = 0 if i > j and\n\
  *          j = 1,...,ILO-1 or i = IHI+1,...,N.\n\
  *          If JOB = 'N' or 'S', ILO = 1 and IHI = N.\n\
  *\n\
  *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)\n\
  *          Details of the permutations and scaling factors applied\n\
  *          to the left side of A and B.  If P(j) is the index of the\n\
  *          row interchanged with row j, and D(j)\n\
  *          is the scaling factor applied to row j, then\n\
  *            LSCALE(j) = P(j)    for J = 1,...,ILO-1\n\
  *                      = D(j)    for J = ILO,...,IHI\n\
  *                      = P(j)    for J = IHI+1,...,N.\n\
  *          The order in which the interchanges are made is N to IHI+1,\n\
  *          then 1 to ILO-1.\n\
  *\n\
  *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)\n\
  *          Details of the permutations and scaling factors applied\n\
  *          to the right side of A and B.  If P(j) is the index of the\n\
  *          column interchanged with column j, and D(j)\n\
  *          is the scaling factor applied to column j, then\n\
  *            LSCALE(j) = P(j)    for J = 1,...,ILO-1\n\
  *                      = D(j)    for J = ILO,...,IHI\n\
  *                      = P(j)    for J = IHI+1,...,N.\n\
  *          The order in which the interchanges are made is N to IHI+1,\n\
  *          then 1 to ILO-1.\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (lwork)\n\
  *          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and\n\
  *          at least 1 when JOB = 'N' or 'P'.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  See R.C. WARD, Balancing the generalized eigenvalue problem,\n\
  *                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.\n\
  *\n\
  *  =====================================================================\n\
  *\n"
 |