File: dlatps

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (192 lines) | stat: -rw-r--r-- 7,307 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
--- 
:name: dlatps
:md5sum: 14110c3ace99afb7ed820151dddf667f
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- trans: 
    :type: char
    :intent: input
- diag: 
    :type: char
    :intent: input
- normin: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: doublereal
    :intent: input
    :dims: 
    - n*(n+1)/2
- x: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n
- scale: 
    :type: doublereal
    :intent: output
- cnorm: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, CNORM, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLATPS solves one of the triangular systems\n\
  *\n\
  *     A *x = s*b  or  A'*x = s*b\n\
  *\n\
  *  with scaling to prevent overflow, where A is an upper or lower\n\
  *  triangular matrix stored in packed form.  Here A' denotes the\n\
  *  transpose of A, x and b are n-element vectors, and s is a scaling\n\
  *  factor, usually less than or equal to 1, chosen so that the\n\
  *  components of x will be less than the overflow threshold.  If the\n\
  *  unscaled problem will not cause overflow, the Level 2 BLAS routine\n\
  *  DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),\n\
  *  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          Specifies whether the matrix A is upper or lower triangular.\n\
  *          = 'U':  Upper triangular\n\
  *          = 'L':  Lower triangular\n\
  *\n\
  *  TRANS   (input) CHARACTER*1\n\
  *          Specifies the operation applied to A.\n\
  *          = 'N':  Solve A * x = s*b  (No transpose)\n\
  *          = 'T':  Solve A'* x = s*b  (Transpose)\n\
  *          = 'C':  Solve A'* x = s*b  (Conjugate transpose = Transpose)\n\
  *\n\
  *  DIAG    (input) CHARACTER*1\n\
  *          Specifies whether or not the matrix A is unit triangular.\n\
  *          = 'N':  Non-unit triangular\n\
  *          = 'U':  Unit triangular\n\
  *\n\
  *  NORMIN  (input) CHARACTER*1\n\
  *          Specifies whether CNORM has been set or not.\n\
  *          = 'Y':  CNORM contains the column norms on entry\n\
  *          = 'N':  CNORM is not set on entry.  On exit, the norms will\n\
  *                  be computed and stored in CNORM.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
  *          The upper or lower triangular matrix A, packed columnwise in\n\
  *          a linear array.  The j-th column of A is stored in the array\n\
  *          AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *\n\
  *  X       (input/output) DOUBLE PRECISION array, dimension (N)\n\
  *          On entry, the right hand side b of the triangular system.\n\
  *          On exit, X is overwritten by the solution vector x.\n\
  *\n\
  *  SCALE   (output) DOUBLE PRECISION\n\
  *          The scaling factor s for the triangular system\n\
  *             A * x = s*b  or  A'* x = s*b.\n\
  *          If SCALE = 0, the matrix A is singular or badly scaled, and\n\
  *          the vector x is an exact or approximate solution to A*x = 0.\n\
  *\n\
  *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)\n\
  *\n\
  *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)\n\
  *          contains the norm of the off-diagonal part of the j-th column\n\
  *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal\n\
  *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)\n\
  *          must be greater than or equal to the 1-norm.\n\
  *\n\
  *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)\n\
  *          returns the 1-norm of the offdiagonal part of the j-th column\n\
  *          of A.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -k, the k-th argument had an illegal value\n\
  *\n\n\
  *  Further Details\n\
  *  ======= =======\n\
  *\n\
  *  A rough bound on x is computed; if that is less than overflow, DTPSV\n\
  *  is called, otherwise, specific code is used which checks for possible\n\
  *  overflow or divide-by-zero at every operation.\n\
  *\n\
  *  A columnwise scheme is used for solving A*x = b.  The basic algorithm\n\
  *  if A is lower triangular is\n\
  *\n\
  *       x[1:n] := b[1:n]\n\
  *       for j = 1, ..., n\n\
  *            x(j) := x(j) / A(j,j)\n\
  *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]\n\
  *       end\n\
  *\n\
  *  Define bounds on the components of x after j iterations of the loop:\n\
  *     M(j) = bound on x[1:j]\n\
  *     G(j) = bound on x[j+1:n]\n\
  *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.\n\
  *\n\
  *  Then for iteration j+1 we have\n\
  *     M(j+1) <= G(j) / | A(j+1,j+1) |\n\
  *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |\n\
  *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )\n\
  *\n\
  *  where CNORM(j+1) is greater than or equal to the infinity-norm of\n\
  *  column j+1 of A, not counting the diagonal.  Hence\n\
  *\n\
  *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )\n\
  *                  1<=i<=j\n\
  *  and\n\
  *\n\
  *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )\n\
  *                                   1<=i< j\n\
  *\n\
  *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the\n\
  *  reciprocal of the largest M(j), j=1,..,n, is larger than\n\
  *  max(underflow, 1/overflow).\n\
  *\n\
  *  The bound on x(j) is also used to determine when a step in the\n\
  *  columnwise method can be performed without fear of overflow.  If\n\
  *  the computed bound is greater than a large constant, x is scaled to\n\
  *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to\n\
  *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.\n\
  *\n\
  *  Similarly, a row-wise scheme is used to solve A'*x = b.  The basic\n\
  *  algorithm for A upper triangular is\n\
  *\n\
  *       for j = 1, ..., n\n\
  *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)\n\
  *       end\n\
  *\n\
  *  We simultaneously compute two bounds\n\
  *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j\n\
  *       M(j) = bound on x(i), 1<=i<=j\n\
  *\n\
  *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we\n\
  *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.\n\
  *  Then the bound on x(j) is\n\
  *\n\
  *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |\n\
  *\n\
  *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )\n\
  *                      1<=i<=j\n\
  *\n\
  *  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater\n\
  *  than max(underflow, 1/overflow).\n\
  *\n\
  *  =====================================================================\n\
  *\n"