1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
---
:name: dlatps
:md5sum: 14110c3ace99afb7ed820151dddf667f
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- diag:
:type: char
:intent: input
- normin:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ap:
:type: doublereal
:intent: input
:dims:
- n*(n+1)/2
- x:
:type: doublereal
:intent: input/output
:dims:
- n
- scale:
:type: doublereal
:intent: output
- cnorm:
:type: doublereal
:intent: input/output
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, CNORM, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLATPS solves one of the triangular systems\n\
*\n\
* A *x = s*b or A'*x = s*b\n\
*\n\
* with scaling to prevent overflow, where A is an upper or lower\n\
* triangular matrix stored in packed form. Here A' denotes the\n\
* transpose of A, x and b are n-element vectors, and s is a scaling\n\
* factor, usually less than or equal to 1, chosen so that the\n\
* components of x will be less than the overflow threshold. If the\n\
* unscaled problem will not cause overflow, the Level 2 BLAS routine\n\
* DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),\n\
* then s is set to 0 and a non-trivial solution to A*x = 0 is returned.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies whether the matrix A is upper or lower triangular.\n\
* = 'U': Upper triangular\n\
* = 'L': Lower triangular\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* Specifies the operation applied to A.\n\
* = 'N': Solve A * x = s*b (No transpose)\n\
* = 'T': Solve A'* x = s*b (Transpose)\n\
* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)\n\
*\n\
* DIAG (input) CHARACTER*1\n\
* Specifies whether or not the matrix A is unit triangular.\n\
* = 'N': Non-unit triangular\n\
* = 'U': Unit triangular\n\
*\n\
* NORMIN (input) CHARACTER*1\n\
* Specifies whether CNORM has been set or not.\n\
* = 'Y': CNORM contains the column norms on entry\n\
* = 'N': CNORM is not set on entry. On exit, the norms will\n\
* be computed and stored in CNORM.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
* The upper or lower triangular matrix A, packed columnwise in\n\
* a linear array. The j-th column of A is stored in the array\n\
* AP as follows:\n\
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
*\n\
* X (input/output) DOUBLE PRECISION array, dimension (N)\n\
* On entry, the right hand side b of the triangular system.\n\
* On exit, X is overwritten by the solution vector x.\n\
*\n\
* SCALE (output) DOUBLE PRECISION\n\
* The scaling factor s for the triangular system\n\
* A * x = s*b or A'* x = s*b.\n\
* If SCALE = 0, the matrix A is singular or badly scaled, and\n\
* the vector x is an exact or approximate solution to A*x = 0.\n\
*\n\
* CNORM (input or output) DOUBLE PRECISION array, dimension (N)\n\
*\n\
* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)\n\
* contains the norm of the off-diagonal part of the j-th column\n\
* of A. If TRANS = 'N', CNORM(j) must be greater than or equal\n\
* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)\n\
* must be greater than or equal to the 1-norm.\n\
*\n\
* If NORMIN = 'N', CNORM is an output argument and CNORM(j)\n\
* returns the 1-norm of the offdiagonal part of the j-th column\n\
* of A.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -k, the k-th argument had an illegal value\n\
*\n\n\
* Further Details\n\
* ======= =======\n\
*\n\
* A rough bound on x is computed; if that is less than overflow, DTPSV\n\
* is called, otherwise, specific code is used which checks for possible\n\
* overflow or divide-by-zero at every operation.\n\
*\n\
* A columnwise scheme is used for solving A*x = b. The basic algorithm\n\
* if A is lower triangular is\n\
*\n\
* x[1:n] := b[1:n]\n\
* for j = 1, ..., n\n\
* x(j) := x(j) / A(j,j)\n\
* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]\n\
* end\n\
*\n\
* Define bounds on the components of x after j iterations of the loop:\n\
* M(j) = bound on x[1:j]\n\
* G(j) = bound on x[j+1:n]\n\
* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.\n\
*\n\
* Then for iteration j+1 we have\n\
* M(j+1) <= G(j) / | A(j+1,j+1) |\n\
* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |\n\
* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )\n\
*\n\
* where CNORM(j+1) is greater than or equal to the infinity-norm of\n\
* column j+1 of A, not counting the diagonal. Hence\n\
*\n\
* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )\n\
* 1<=i<=j\n\
* and\n\
*\n\
* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )\n\
* 1<=i< j\n\
*\n\
* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the\n\
* reciprocal of the largest M(j), j=1,..,n, is larger than\n\
* max(underflow, 1/overflow).\n\
*\n\
* The bound on x(j) is also used to determine when a step in the\n\
* columnwise method can be performed without fear of overflow. If\n\
* the computed bound is greater than a large constant, x is scaled to\n\
* prevent overflow, but if the bound overflows, x is set to 0, x(j) to\n\
* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.\n\
*\n\
* Similarly, a row-wise scheme is used to solve A'*x = b. The basic\n\
* algorithm for A upper triangular is\n\
*\n\
* for j = 1, ..., n\n\
* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)\n\
* end\n\
*\n\
* We simultaneously compute two bounds\n\
* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j\n\
* M(j) = bound on x(i), 1<=i<=j\n\
*\n\
* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we\n\
* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.\n\
* Then the bound on x(j) is\n\
*\n\
* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |\n\
*\n\
* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )\n\
* 1<=i<=j\n\
*\n\
* and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater\n\
* than max(underflow, 1/overflow).\n\
*\n\
* =====================================================================\n\
*\n"
|