1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
---
:name: dlauu2
:md5sum: 4f0fa7e3d7bb575ad8296112c8ff7b7f
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DLAUU2( UPLO, N, A, LDA, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLAUU2 computes the product U * U' or L' * L, where the triangular\n\
* factor U or L is stored in the upper or lower triangular part of\n\
* the array A.\n\
*\n\
* If UPLO = 'U' or 'u' then the upper triangle of the result is stored,\n\
* overwriting the factor U in A.\n\
* If UPLO = 'L' or 'l' then the lower triangle of the result is stored,\n\
* overwriting the factor L in A.\n\
*\n\
* This is the unblocked form of the algorithm, calling Level 2 BLAS.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies whether the triangular factor stored in the array A\n\
* is upper or lower triangular:\n\
* = 'U': Upper triangular\n\
* = 'L': Lower triangular\n\
*\n\
* N (input) INTEGER\n\
* The order of the triangular factor U or L. N >= 0.\n\
*\n\
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the triangular factor U or L.\n\
* On exit, if UPLO = 'U', the upper triangle of A is\n\
* overwritten with the upper triangle of the product U * U';\n\
* if UPLO = 'L', the lower triangle of A is overwritten with\n\
* the lower triangle of the product L' * L.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -k, the k-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n"
|