File: dpftrs

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (164 lines) | stat: -rw-r--r-- 5,765 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
--- 
:name: dpftrs
:md5sum: 7346bc2529481adfa1f5429620050f99
:category: :subroutine
:arguments: 
- transr: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input
    :dims: 
    - n*(n+1)/2
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DPFTRS solves a system of linear equations A*X = B with a symmetric\n\
  *  positive definite matrix A using the Cholesky factorization\n\
  *  A = U**T*U or A = L*L**T computed by DPFTRF.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  TRANSR  (input) CHARACTER*1\n\
  *          = 'N':  The Normal TRANSR of RFP A is stored;\n\
  *          = 'T':  The Transpose TRANSR of RFP A is stored.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of RFP A is stored;\n\
  *          = 'L':  Lower triangle of RFP A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  A       (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ).\n\
  *          The triangular factor U or L from the Cholesky factorization\n\
  *          of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF.\n\
  *          See note below for more details about RFP A.\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
  *          On entry, the right hand side matrix B.\n\
  *          On exit, the solution matrix X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  We first consider Rectangular Full Packed (RFP) Format when N is\n\
  *  even. We give an example where N = 6.\n\
  *\n\
  *      AP is Upper             AP is Lower\n\
  *\n\
  *   00 01 02 03 04 05       00\n\
  *      11 12 13 14 15       10 11\n\
  *         22 23 24 25       20 21 22\n\
  *            33 34 35       30 31 32 33\n\
  *               44 45       40 41 42 43 44\n\
  *                  55       50 51 52 53 54 55\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
  *  the transpose of the first three columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
  *  the transpose of the last three columns of AP lower.\n\
  *  This covers the case N even and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *        03 04 05                33 43 53\n\
  *        13 14 15                00 44 54\n\
  *        23 24 25                10 11 55\n\
  *        33 34 35                20 21 22\n\
  *        00 44 45                30 31 32\n\
  *        01 11 55                40 41 42\n\
  *        02 12 22                50 51 52\n\
  *\n\
  *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     03 13 23 33 00 01 02    33 00 10 20 30 40 50\n\
  *     04 14 24 34 44 11 12    43 44 11 21 31 41 51\n\
  *     05 15 25 35 45 55 22    53 54 55 22 32 42 52\n\
  *\n\
  *\n\
  *  We then consider Rectangular Full Packed (RFP) Format when N is\n\
  *  odd. We give an example where N = 5.\n\
  *\n\
  *     AP is Upper                 AP is Lower\n\
  *\n\
  *   00 01 02 03 04              00\n\
  *      11 12 13 14              10 11\n\
  *         22 23 24              20 21 22\n\
  *            33 34              30 31 32 33\n\
  *               44              40 41 42 43 44\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
  *  the transpose of the first two columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
  *  the transpose of the last two columns of AP lower.\n\
  *  This covers the case N odd and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *        02 03 04                00 33 43\n\
  *        12 13 14                10 11 44\n\
  *        22 23 24                20 21 22\n\
  *        00 33 34                30 31 32\n\
  *        01 11 44                40 41 42\n\
  *\n\
  *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     02 12 22 00 01             00 10 20 30 40 50\n\
  *     03 13 23 33 11             33 11 21 31 41 51\n\
  *     04 14 24 34 44             43 44 22 32 42 52\n\
  *\n\
  *  =====================================================================\n\
  *\n"