| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 
 | --- 
:name: dppsv
:md5sum: 05812066fff4498bbd8b9748ba91010d
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- ap: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}
:fortran_help: "      SUBROUTINE DPPSV( UPLO, N, NRHS, AP, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DPPSV computes the solution to a real system of linear equations\n\
  *     A * X = B,\n\
  *  where A is an N-by-N symmetric positive definite matrix stored in\n\
  *  packed format and X and B are N-by-NRHS matrices.\n\
  *\n\
  *  The Cholesky decomposition is used to factor A as\n\
  *     A = U**T* U,  if UPLO = 'U', or\n\
  *     A = L * L**T,  if UPLO = 'L',\n\
  *  where U is an upper triangular matrix and L is a lower triangular\n\
  *  matrix.  The factored form of A is then used to solve the system of\n\
  *  equations A * X = B.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of linear equations, i.e., the order of the\n\
  *          matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the symmetric matrix\n\
  *          A, packed columnwise in a linear array.  The j-th column of A\n\
  *          is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *          See below for further details.\n\
  *\n\
  *          On exit, if INFO = 0, the factor U or L from the Cholesky\n\
  *          factorization A = U**T*U or A = L*L**T, in the same storage\n\
  *          format as A.\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
  *          On entry, the N-by-NRHS right hand side matrix B.\n\
  *          On exit, if INFO = 0, the N-by-NRHS solution matrix X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, the leading minor of order i of A is not\n\
  *                positive definite, so the factorization could not be\n\
  *                completed, and the solution has not been computed.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The packed storage scheme is illustrated by the following example\n\
  *  when N = 4, UPLO = 'U':\n\
  *\n\
  *  Two-dimensional storage of the symmetric matrix A:\n\
  *\n\
  *     a11 a12 a13 a14\n\
  *         a22 a23 a24\n\
  *             a33 a34     (aij = conjg(aji))\n\
  *                 a44\n\
  *\n\
  *  Packed storage of the upper triangle of A:\n\
  *\n\
  *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]\n\
  *\n\
  *  =====================================================================\n\
  *\n\
  *     .. External Functions ..\n      LOGICAL            LSAME\n      EXTERNAL           LSAME\n\
  *     ..\n\
  *     .. External Subroutines ..\n      EXTERNAL           DPPTRF, DPPTRS, XERBLA\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX\n\
  *     ..\n"
 |