File: dsptrf

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (120 lines) | stat: -rw-r--r-- 4,976 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
--- 
:name: dsptrf
:md5sum: 6ecf609969698a72de25e3e961f876f8
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldap
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  n: ((int)sqrtf(ldap*8+1.0f)-1)/2
:fortran_help: "      SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DSPTRF computes the factorization of a real symmetric matrix A stored\n\
  *  in packed format using the Bunch-Kaufman diagonal pivoting method:\n\
  *\n\
  *     A = U*D*U**T  or  A = L*D*L**T\n\
  *\n\
  *  where U (or L) is a product of permutation and unit upper (lower)\n\
  *  triangular matrices, and D is symmetric and block diagonal with\n\
  *  1-by-1 and 2-by-2 diagonal blocks.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the symmetric matrix\n\
  *          A, packed columnwise in a linear array.  The j-th column of A\n\
  *          is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *\n\
  *          On exit, the block diagonal matrix D and the multipliers used\n\
  *          to obtain the factor U or L, stored as a packed triangular\n\
  *          matrix overwriting A (see below for further details).\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (N)\n\
  *          Details of the interchanges and the block structure of D.\n\
  *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were\n\
  *          interchanged and D(k,k) is a 1-by-1 diagonal block.\n\
  *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and\n\
  *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)\n\
  *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =\n\
  *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were\n\
  *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization\n\
  *               has been completed, but the block diagonal matrix D is\n\
  *               exactly singular, and division by zero will occur if it\n\
  *               is used to solve a system of equations.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  5-96 - Based on modifications by J. Lewis, Boeing Computer Services\n\
  *         Company\n\
  *\n\
  *  If UPLO = 'U', then A = U*D*U', where\n\
  *     U = P(n)*U(n)* ... *P(k)U(k)* ...,\n\
  *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to\n\
  *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
  *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as\n\
  *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such\n\
  *  that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
  *\n\
  *             (   I    v    0   )   k-s\n\
  *     U(k) =  (   0    I    0   )   s\n\
  *             (   0    0    I   )   n-k\n\
  *                k-s   s   n-k\n\
  *\n\
  *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).\n\
  *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),\n\
  *  and A(k,k), and v overwrites A(1:k-2,k-1:k).\n\
  *\n\
  *  If UPLO = 'L', then A = L*D*L', where\n\
  *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,\n\
  *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to\n\
  *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
  *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as\n\
  *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such\n\
  *  that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
  *\n\
  *             (   I    0     0   )  k-1\n\
  *     L(k) =  (   0    I     0   )  s\n\
  *             (   0    v     I   )  n-k-s+1\n\
  *                k-1   s  n-k-s+1\n\
  *\n\
  *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).\n\
  *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),\n\
  *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).\n\
  *\n\
  *  =====================================================================\n\
  *\n"