File: sgbcon

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (114 lines) | stat: -rw-r--r-- 3,350 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
--- 
:name: sgbcon
:md5sum: eaa07e1508e7cce0f3ead5f9b4aec35a
:category: :subroutine
:arguments: 
- norm: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- kl: 
    :type: integer
    :intent: input
- ku: 
    :type: integer
    :intent: input
- ab: 
    :type: real
    :intent: input
    :dims: 
    - ldab
    - n
- ldab: 
    :type: integer
    :intent: input
- ipiv: 
    :type: integer
    :intent: input
    :dims: 
    - n
- anorm: 
    :type: real
    :intent: input
- rcond: 
    :type: real
    :intent: output
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - 3*n
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SGBCON estimates the reciprocal of the condition number of a real\n\
  *  general band matrix A, in either the 1-norm or the infinity-norm,\n\
  *  using the LU factorization computed by SGBTRF.\n\
  *\n\
  *  An estimate is obtained for norm(inv(A)), and the reciprocal of the\n\
  *  condition number is computed as\n\
  *     RCOND = 1 / ( norm(A) * norm(inv(A)) ).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  NORM    (input) CHARACTER*1\n\
  *          Specifies whether the 1-norm condition number or the\n\
  *          infinity-norm condition number is required:\n\
  *          = '1' or 'O':  1-norm;\n\
  *          = 'I':         Infinity-norm.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  KL      (input) INTEGER\n\
  *          The number of subdiagonals within the band of A.  KL >= 0.\n\
  *\n\
  *  KU      (input) INTEGER\n\
  *          The number of superdiagonals within the band of A.  KU >= 0.\n\
  *\n\
  *  AB      (input) REAL array, dimension (LDAB,N)\n\
  *          Details of the LU factorization of the band matrix A, as\n\
  *          computed by SGBTRF.  U is stored as an upper triangular band\n\
  *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and\n\
  *          the multipliers used during the factorization are stored in\n\
  *          rows KL+KU+2 to 2*KL+KU+1.\n\
  *\n\
  *  LDAB    (input) INTEGER\n\
  *          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.\n\
  *\n\
  *  IPIV    (input) INTEGER array, dimension (N)\n\
  *          The pivot indices; for 1 <= i <= N, row i of the matrix was\n\
  *          interchanged with row IPIV(i).\n\
  *\n\
  *  ANORM   (input) REAL\n\
  *          If NORM = '1' or 'O', the 1-norm of the original matrix A.\n\
  *          If NORM = 'I', the infinity-norm of the original matrix A.\n\
  *\n\
  *  RCOND   (output) REAL\n\
  *          The reciprocal of the condition number of the matrix A,\n\
  *          computed as RCOND = 1/(norm(A) * norm(inv(A))).\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (3*N)\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"