| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 
 | --- 
:name: sgebd2
:md5sum: e4e4458e28f45673d7327d16a19ea99c
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: output
    :dims: 
    - MIN(m,n)
- e: 
    :type: real
    :intent: output
    :dims: 
    - MIN(m,n)-1
- tauq: 
    :type: real
    :intent: output
    :dims: 
    - MIN(m,n)
- taup: 
    :type: real
    :intent: output
    :dims: 
    - MIN(m,n)
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - MAX(m,n)
- info: 
    :type: integer
    :intent: output
:substitutions: {}
:fortran_help: "      SUBROUTINE SGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SGEBD2 reduces a real general m by n matrix A to upper or lower\n\
  *  bidiagonal form B by an orthogonal transformation: Q' * A * P = B.\n\
  *\n\
  *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows in the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns in the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) REAL array, dimension (LDA,N)\n\
  *          On entry, the m by n general matrix to be reduced.\n\
  *          On exit,\n\
  *          if m >= n, the diagonal and the first superdiagonal are\n\
  *            overwritten with the upper bidiagonal matrix B; the\n\
  *            elements below the diagonal, with the array TAUQ, represent\n\
  *            the orthogonal matrix Q as a product of elementary\n\
  *            reflectors, and the elements above the first superdiagonal,\n\
  *            with the array TAUP, represent the orthogonal matrix P as\n\
  *            a product of elementary reflectors;\n\
  *          if m < n, the diagonal and the first subdiagonal are\n\
  *            overwritten with the lower bidiagonal matrix B; the\n\
  *            elements below the first subdiagonal, with the array TAUQ,\n\
  *            represent the orthogonal matrix Q as a product of\n\
  *            elementary reflectors, and the elements above the diagonal,\n\
  *            with the array TAUP, represent the orthogonal matrix P as\n\
  *            a product of elementary reflectors.\n\
  *          See Further Details.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  D       (output) REAL array, dimension (min(M,N))\n\
  *          The diagonal elements of the bidiagonal matrix B:\n\
  *          D(i) = A(i,i).\n\
  *\n\
  *  E       (output) REAL array, dimension (min(M,N)-1)\n\
  *          The off-diagonal elements of the bidiagonal matrix B:\n\
  *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;\n\
  *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.\n\
  *\n\
  *  TAUQ    (output) REAL array dimension (min(M,N))\n\
  *          The scalar factors of the elementary reflectors which\n\
  *          represent the orthogonal matrix Q. See Further Details.\n\
  *\n\
  *  TAUP    (output) REAL array, dimension (min(M,N))\n\
  *          The scalar factors of the elementary reflectors which\n\
  *          represent the orthogonal matrix P. See Further Details.\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (max(M,N))\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit.\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The matrices Q and P are represented as products of elementary\n\
  *  reflectors:\n\
  *\n\
  *  If m >= n,\n\
  *\n\
  *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)\n\
  *\n\
  *  Each H(i) and G(i) has the form:\n\
  *\n\
  *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'\n\
  *\n\
  *  where tauq and taup are real scalars, and v and u are real vectors;\n\
  *  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);\n\
  *  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);\n\
  *  tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
  *\n\
  *  If m < n,\n\
  *\n\
  *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)\n\
  *\n\
  *  Each H(i) and G(i) has the form:\n\
  *\n\
  *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'\n\
  *\n\
  *  where tauq and taup are real scalars, and v and u are real vectors;\n\
  *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);\n\
  *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);\n\
  *  tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
  *\n\
  *  The contents of A on exit are illustrated by the following examples:\n\
  *\n\
  *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):\n\
  *\n\
  *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )\n\
  *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )\n\
  *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )\n\
  *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )\n\
  *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )\n\
  *    (  v1  v2  v3  v4  v5 )\n\
  *\n\
  *  where d and e denote diagonal and off-diagonal elements of B, vi\n\
  *  denotes an element of the vector defining H(i), and ui an element of\n\
  *  the vector defining G(i).\n\
  *\n\
  *  =====================================================================\n\
  *\n"
 |