1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
---
:name: sgerq2
:md5sum: 8307cc39ced248fef7772c32448921a0
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: real
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- tau:
:type: real
:intent: output
:dims:
- MIN(m,n)
- work:
:type: real
:intent: workspace
:dims:
- m
- info:
:type: integer
:intent: output
:substitutions:
m: lda
:fortran_help: " SUBROUTINE SGERQ2( M, N, A, LDA, TAU, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SGERQ2 computes an RQ factorization of a real m by n matrix A:\n\
* A = R * Q.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. N >= 0.\n\
*\n\
* A (input/output) REAL array, dimension (LDA,N)\n\
* On entry, the m by n matrix A.\n\
* On exit, if m <= n, the upper triangle of the subarray\n\
* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;\n\
* if m >= n, the elements on and above the (m-n)-th subdiagonal\n\
* contain the m by n upper trapezoidal matrix R; the remaining\n\
* elements, with the array TAU, represent the orthogonal matrix\n\
* Q as a product of elementary reflectors (see Further\n\
* Details).\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* TAU (output) REAL array, dimension (min(M,N))\n\
* The scalar factors of the elementary reflectors (see Further\n\
* Details).\n\
*\n\
* WORK (workspace) REAL array, dimension (M)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrix Q is represented as a product of elementary reflectors\n\
*\n\
* Q = H(1) H(2) . . . H(k), where k = min(m,n).\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H(i) = I - tau * v * v'\n\
*\n\
* where tau is a real scalar, and v is a real vector with\n\
* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in\n\
* A(m-k+i,1:n-k+i-1), and tau in TAU(i).\n\
*\n\
* =====================================================================\n\
*\n"
|