File: sgerq2

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (91 lines) | stat: -rw-r--r-- 2,629 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
--- 
:name: sgerq2
:md5sum: 8307cc39ced248fef7772c32448921a0
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- tau: 
    :type: real
    :intent: output
    :dims: 
    - MIN(m,n)
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - m
- info: 
    :type: integer
    :intent: output
:substitutions: 
  m: lda
:fortran_help: "      SUBROUTINE SGERQ2( M, N, A, LDA, TAU, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SGERQ2 computes an RQ factorization of a real m by n matrix A:\n\
  *  A = R * Q.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) REAL array, dimension (LDA,N)\n\
  *          On entry, the m by n matrix A.\n\
  *          On exit, if m <= n, the upper triangle of the subarray\n\
  *          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;\n\
  *          if m >= n, the elements on and above the (m-n)-th subdiagonal\n\
  *          contain the m by n upper trapezoidal matrix R; the remaining\n\
  *          elements, with the array TAU, represent the orthogonal matrix\n\
  *          Q as a product of elementary reflectors (see Further\n\
  *          Details).\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  TAU     (output) REAL array, dimension (min(M,N))\n\
  *          The scalar factors of the elementary reflectors (see Further\n\
  *          Details).\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (M)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The matrix Q is represented as a product of elementary reflectors\n\
  *\n\
  *     Q = H(1) H(2) . . . H(k), where k = min(m,n).\n\
  *\n\
  *  Each H(i) has the form\n\
  *\n\
  *     H(i) = I - tau * v * v'\n\
  *\n\
  *  where tau is a real scalar, and v is a real vector with\n\
  *  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in\n\
  *  A(m-k+i,1:n-k+i-1), and tau in TAU(i).\n\
  *\n\
  *  =====================================================================\n\
  *\n"