1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
---
:name: sgsvj0
:md5sum: 3d2a3ab6cc4e65db034ed891716f6493
:category: :subroutine
:arguments:
- jobv:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: real
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- d:
:type: real
:intent: input/output
:dims:
- n
- sva:
:type: real
:intent: input/output
:dims:
- n
- mv:
:type: integer
:intent: input
- v:
:type: real
:intent: input/output
:dims:
- ldv
- n
- ldv:
:type: integer
:intent: input
- eps:
:type: integer
:intent: input
- sfmin:
:type: integer
:intent: input
- tol:
:type: real
:intent: input
- nsweep:
:type: integer
:intent: input
- work:
:type: real
:intent: workspace
:dims:
- lwork
- lwork:
:type: integer
:intent: input
:option: true
:default: m
- info:
:type: integer
:intent: output
:substitutions:
lwork: m
:fortran_help: " SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SGSVJ0 is called from SGESVJ as a pre-processor and that is its main\n\
* purpose. It applies Jacobi rotations in the same way as SGESVJ does, but\n\
* it does not check convergence (stopping criterion). Few tuning\n\
* parameters (marked by [TP]) are available for the implementer.\n\
*\n\
* Further Details\n\
* ~~~~~~~~~~~~~~~\n\
* SGSVJ0 is used just to enable SGESVJ to call a simplified version of\n\
* itself to work on a submatrix of the original matrix.\n\
*\n\
* Contributors\n\
* ~~~~~~~~~~~~\n\
* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)\n\
*\n\
* Bugs, Examples and Comments\n\
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\
* Please report all bugs and send interesting test examples and comments to\n\
* drmac@math.hr. Thank you.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBV (input) CHARACTER*1\n\
* Specifies whether the output from this procedure is used\n\
* to compute the matrix V:\n\
* = 'V': the product of the Jacobi rotations is accumulated\n\
* by postmulyiplying the N-by-N array V.\n\
* (See the description of V.)\n\
* = 'A': the product of the Jacobi rotations is accumulated\n\
* by postmulyiplying the MV-by-N array V.\n\
* (See the descriptions of MV and V.)\n\
* = 'N': the Jacobi rotations are not accumulated.\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the input matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the input matrix A.\n\
* M >= N >= 0.\n\
*\n\
* A (input/output) REAL array, dimension (LDA,N)\n\
* On entry, M-by-N matrix A, such that A*diag(D) represents\n\
* the input matrix.\n\
* On exit,\n\
* A_onexit * D_onexit represents the input matrix A*diag(D)\n\
* post-multiplied by a sequence of Jacobi rotations, where the\n\
* rotation threshold and the total number of sweeps are given in\n\
* TOL and NSWEEP, respectively.\n\
* (See the descriptions of D, TOL and NSWEEP.)\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* D (input/workspace/output) REAL array, dimension (N)\n\
* The array D accumulates the scaling factors from the fast scaled\n\
* Jacobi rotations.\n\
* On entry, A*diag(D) represents the input matrix.\n\
* On exit, A_onexit*diag(D_onexit) represents the input matrix\n\
* post-multiplied by a sequence of Jacobi rotations, where the\n\
* rotation threshold and the total number of sweeps are given in\n\
* TOL and NSWEEP, respectively.\n\
* (See the descriptions of A, TOL and NSWEEP.)\n\
*\n\
* SVA (input/workspace/output) REAL array, dimension (N)\n\
* On entry, SVA contains the Euclidean norms of the columns of\n\
* the matrix A*diag(D).\n\
* On exit, SVA contains the Euclidean norms of the columns of\n\
* the matrix onexit*diag(D_onexit).\n\
*\n\
* MV (input) INTEGER\n\
* If JOBV .EQ. 'A', then MV rows of V are post-multipled by a\n\
* sequence of Jacobi rotations.\n\
* If JOBV = 'N', then MV is not referenced.\n\
*\n\
* V (input/output) REAL array, dimension (LDV,N)\n\
* If JOBV .EQ. 'V' then N rows of V are post-multipled by a\n\
* sequence of Jacobi rotations.\n\
* If JOBV .EQ. 'A' then MV rows of V are post-multipled by a\n\
* sequence of Jacobi rotations.\n\
* If JOBV = 'N', then V is not referenced.\n\
*\n\
* LDV (input) INTEGER\n\
* The leading dimension of the array V, LDV >= 1.\n\
* If JOBV = 'V', LDV .GE. N.\n\
* If JOBV = 'A', LDV .GE. MV.\n\
*\n\
* EPS (input) INTEGER\n\
* EPS = SLAMCH('Epsilon')\n\
*\n\
* SFMIN (input) INTEGER\n\
* SFMIN = SLAMCH('Safe Minimum')\n\
*\n\
* TOL (input) REAL\n\
* TOL is the threshold for Jacobi rotations. For a pair\n\
* A(:,p), A(:,q) of pivot columns, the Jacobi rotation is\n\
* applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.\n\
*\n\
* NSWEEP (input) INTEGER\n\
* NSWEEP is the number of sweeps of Jacobi rotations to be\n\
* performed.\n\
*\n\
* WORK (workspace) REAL array, dimension LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* LWORK is the dimension of WORK. LWORK .GE. M.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0 : successful exit.\n\
* < 0 : if INFO = -i, then the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Parameters ..\n REAL ZERO, HALF, ONE, TWO\n PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,\n + TWO = 2.0E0 )\n\
* ..\n\
* .. Local Scalars ..\n REAL AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,\n + BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,\n + ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,\n + THSIGN\n INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,\n + ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,\n + NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND\n LOGICAL APPLV, ROTOK, RSVEC\n\
* ..\n\
* .. Local Arrays ..\n REAL FASTR( 5 )\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT\n\
* ..\n\
* .. External Functions ..\n REAL SDOT, SNRM2\n INTEGER ISAMAX\n LOGICAL LSAME\n EXTERNAL ISAMAX, LSAME, SDOT, SNRM2\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP\n\
* ..\n"
|