1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
---
:name: slarzb
:md5sum: 902d5ca8735017153470221c8083e9c9
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- direct:
:type: char
:intent: input
- storev:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- l:
:type: integer
:intent: input
- v:
:type: real
:intent: input
:dims:
- ldv
- nv
- ldv:
:type: integer
:intent: input
- t:
:type: real
:intent: input
:dims:
- ldt
- k
- ldt:
:type: integer
:intent: input
- c:
:type: real
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: real
:intent: workspace
:dims:
- ldwork
- k
- ldwork:
:type: integer
:intent: input
:substitutions:
ldwork: "MAX(1,n) ? side = 'l' : MAX(1,m) ? side = 'r' : 0"
:fortran_help: " SUBROUTINE SLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, C, LDC, WORK, LDWORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SLARZB applies a real block reflector H or its transpose H**T to\n\
* a real distributed M-by-N C from the left or the right.\n\
*\n\
* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': apply H or H' from the Left\n\
* = 'R': apply H or H' from the Right\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* = 'N': apply H (No transpose)\n\
* = 'C': apply H' (Transpose)\n\
*\n\
* DIRECT (input) CHARACTER*1\n\
* Indicates how H is formed from a product of elementary\n\
* reflectors\n\
* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)\n\
* = 'B': H = H(k) . . . H(2) H(1) (Backward)\n\
*\n\
* STOREV (input) CHARACTER*1\n\
* Indicates how the vectors which define the elementary\n\
* reflectors are stored:\n\
* = 'C': Columnwise (not supported yet)\n\
* = 'R': Rowwise\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C.\n\
*\n\
* K (input) INTEGER\n\
* The order of the matrix T (= the number of elementary\n\
* reflectors whose product defines the block reflector).\n\
*\n\
* L (input) INTEGER\n\
* The number of columns of the matrix V containing the\n\
* meaningful part of the Householder reflectors.\n\
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.\n\
*\n\
* V (input) REAL array, dimension (LDV,NV).\n\
* If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.\n\
*\n\
* LDV (input) INTEGER\n\
* The leading dimension of the array V.\n\
* If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.\n\
*\n\
* T (input) REAL array, dimension (LDT,K)\n\
* The triangular K-by-K matrix T in the representation of the\n\
* block reflector.\n\
*\n\
* LDT (input) INTEGER\n\
* The leading dimension of the array T. LDT >= K.\n\
*\n\
* C (input/output) REAL array, dimension (LDC,N)\n\
* On entry, the M-by-N matrix C.\n\
* On exit, C is overwritten by H*C or H'*C or C*H or C*H'.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace) REAL array, dimension (LDWORK,K)\n\
*\n\
* LDWORK (input) INTEGER\n\
* The leading dimension of the array WORK.\n\
* If SIDE = 'L', LDWORK >= max(1,N);\n\
* if SIDE = 'R', LDWORK >= max(1,M).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n\
*\n\
* =====================================================================\n\
*\n"
|