1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
---
:name: slatrd
:md5sum: c95f0cc9aadb9f343ff8ec7c58fd0f69
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nb:
:type: integer
:intent: input
- a:
:type: real
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- e:
:type: real
:intent: output
:dims:
- n-1
- tau:
:type: real
:intent: output
:dims:
- n-1
- w:
:type: real
:intent: output
:dims:
- ldw
- MAX(n,nb)
- ldw:
:type: integer
:intent: input
:substitutions:
ldw: MAX(1,n)
:fortran_help: " SUBROUTINE SLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )\n\n\
* Purpose\n\
* =======\n\
*\n\
* SLATRD reduces NB rows and columns of a real symmetric matrix A to\n\
* symmetric tridiagonal form by an orthogonal similarity\n\
* transformation Q' * A * Q, and returns the matrices V and W which are\n\
* needed to apply the transformation to the unreduced part of A.\n\
*\n\
* If UPLO = 'U', SLATRD reduces the last NB rows and columns of a\n\
* matrix, of which the upper triangle is supplied;\n\
* if UPLO = 'L', SLATRD reduces the first NB rows and columns of a\n\
* matrix, of which the lower triangle is supplied.\n\
*\n\
* This is an auxiliary routine called by SSYTRD.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies whether the upper or lower triangular part of the\n\
* symmetric matrix A is stored:\n\
* = 'U': Upper triangular\n\
* = 'L': Lower triangular\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A.\n\
*\n\
* NB (input) INTEGER\n\
* The number of rows and columns to be reduced.\n\
*\n\
* A (input/output) REAL array, dimension (LDA,N)\n\
* On entry, the symmetric matrix A. If UPLO = 'U', the leading\n\
* n-by-n upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading n-by-n lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
* On exit:\n\
* if UPLO = 'U', the last NB columns have been reduced to\n\
* tridiagonal form, with the diagonal elements overwriting\n\
* the diagonal elements of A; the elements above the diagonal\n\
* with the array TAU, represent the orthogonal matrix Q as a\n\
* product of elementary reflectors;\n\
* if UPLO = 'L', the first NB columns have been reduced to\n\
* tridiagonal form, with the diagonal elements overwriting\n\
* the diagonal elements of A; the elements below the diagonal\n\
* with the array TAU, represent the orthogonal matrix Q as a\n\
* product of elementary reflectors.\n\
* See Further Details.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= (1,N).\n\
*\n\
* E (output) REAL array, dimension (N-1)\n\
* If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal\n\
* elements of the last NB columns of the reduced matrix;\n\
* if UPLO = 'L', E(1:nb) contains the subdiagonal elements of\n\
* the first NB columns of the reduced matrix.\n\
*\n\
* TAU (output) REAL array, dimension (N-1)\n\
* The scalar factors of the elementary reflectors, stored in\n\
* TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.\n\
* See Further Details.\n\
*\n\
* W (output) REAL array, dimension (LDW,NB)\n\
* The n-by-nb matrix W required to update the unreduced part\n\
* of A.\n\
*\n\
* LDW (input) INTEGER\n\
* The leading dimension of the array W. LDW >= max(1,N).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* If UPLO = 'U', the matrix Q is represented as a product of elementary\n\
* reflectors\n\
*\n\
* Q = H(n) H(n-1) . . . H(n-nb+1).\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H(i) = I - tau * v * v'\n\
*\n\
* where tau is a real scalar, and v is a real vector with\n\
* v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),\n\
* and tau in TAU(i-1).\n\
*\n\
* If UPLO = 'L', the matrix Q is represented as a product of elementary\n\
* reflectors\n\
*\n\
* Q = H(1) H(2) . . . H(nb).\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H(i) = I - tau * v * v'\n\
*\n\
* where tau is a real scalar, and v is a real vector with\n\
* v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),\n\
* and tau in TAU(i).\n\
*\n\
* The elements of the vectors v together form the n-by-nb matrix V\n\
* which is needed, with W, to apply the transformation to the unreduced\n\
* part of the matrix, using a symmetric rank-2k update of the form:\n\
* A := A - V*W' - W*V'.\n\
*\n\
* The contents of A on exit are illustrated by the following examples\n\
* with n = 5 and nb = 2:\n\
*\n\
* if UPLO = 'U': if UPLO = 'L':\n\
*\n\
* ( a a a v4 v5 ) ( d )\n\
* ( a a v4 v5 ) ( 1 d )\n\
* ( a 1 v5 ) ( v1 1 a )\n\
* ( d 1 ) ( v1 v2 a a )\n\
* ( d ) ( v1 v2 a a a )\n\
*\n\
* where d denotes a diagonal element of the reduced matrix, a denotes\n\
* an element of the original matrix that is unchanged, and vi denotes\n\
* an element of the vector defining H(i).\n\
*\n\
* =====================================================================\n\
*\n"
|