| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 
 | --- 
:name: zcposv
:md5sum: f63123d92c2b19650e7f886a8530407f
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- x: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - ldx
    - nrhs
- ldx: 
    :type: integer
    :intent: input
- work: 
    :type: doublecomplex
    :intent: workspace
    :dims: 
    - n*nrhs
- swork: 
    :type: complex
    :intent: workspace
    :dims: 
    - n*(n+nrhs)
- rwork: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - n
- iter: 
    :type: integer
    :intent: output
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldx: MAX(1,n)
:fortran_help: "      SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZCPOSV computes the solution to a complex system of linear equations\n\
  *     A * X = B,\n\
  *  where A is an N-by-N Hermitian positive definite matrix and X and B\n\
  *  are N-by-NRHS matrices.\n\
  *\n\
  *  ZCPOSV first attempts to factorize the matrix in COMPLEX and use this\n\
  *  factorization within an iterative refinement procedure to produce a\n\
  *  solution with COMPLEX*16 normwise backward error quality (see below).\n\
  *  If the approach fails the method switches to a COMPLEX*16\n\
  *  factorization and solve.\n\
  *\n\
  *  The iterative refinement is not going to be a winning strategy if\n\
  *  the ratio COMPLEX performance over COMPLEX*16 performance is too\n\
  *  small. A reasonable strategy should take the number of right-hand\n\
  *  sides and the size of the matrix into account. This might be done\n\
  *  with a call to ILAENV in the future. Up to now, we always try\n\
  *  iterative refinement.\n\
  *\n\
  *  The iterative refinement process is stopped if\n\
  *      ITER > ITERMAX\n\
  *  or for all the RHS we have:\n\
  *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX\n\
  *  where\n\
  *      o ITER is the number of the current iteration in the iterative\n\
  *        refinement process\n\
  *      o RNRM is the infinity-norm of the residual\n\
  *      o XNRM is the infinity-norm of the solution\n\
  *      o ANRM is the infinity-operator-norm of the matrix A\n\
  *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')\n\
  *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00\n\
  *  respectively.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of linear equations, i.e., the order of the\n\
  *          matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array,\n\
  *          dimension (LDA,N)\n\
  *          On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n\
  *          N-by-N upper triangular part of A contains the upper\n\
  *          triangular part of the matrix A, and the strictly lower\n\
  *          triangular part of A is not referenced.  If UPLO = 'L', the\n\
  *          leading N-by-N lower triangular part of A contains the lower\n\
  *          triangular part of the matrix A, and the strictly upper\n\
  *          triangular part of A is not referenced.\n\
  *\n\
  *          Note that the imaginary parts of the diagonal\n\
  *          elements need not be set and are assumed to be zero.\n\
  *\n\
  *          On exit, if iterative refinement has been successfully used\n\
  *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is\n\
  *          unchanged, if double precision factorization has been used\n\
  *          (INFO.EQ.0 and ITER.LT.0, see description below), then the\n\
  *          array A contains the factor U or L from the Cholesky\n\
  *          factorization A = U**H*U or A = L*L**H.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)\n\
  *          The N-by-NRHS right hand side matrix B.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)\n\
  *          If INFO = 0, the N-by-NRHS solution matrix X.\n\
  *\n\
  *  LDX     (input) INTEGER\n\
  *          The leading dimension of the array X.  LDX >= max(1,N).\n\
  *\n\
  *  WORK    (workspace) COMPLEX*16 array, dimension (N*NRHS)\n\
  *          This array is used to hold the residual vectors.\n\
  *\n\
  *  SWORK   (workspace) COMPLEX array, dimension (N*(N+NRHS))\n\
  *          This array is used to use the single precision matrix and the\n\
  *          right-hand sides or solutions in single precision.\n\
  *\n\
  *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n\
  *\n\
  *  ITER    (output) INTEGER\n\
  *          < 0: iterative refinement has failed, COMPLEX*16\n\
  *               factorization has been performed\n\
  *               -1 : the routine fell back to full precision for\n\
  *                    implementation- or machine-specific reasons\n\
  *               -2 : narrowing the precision induced an overflow,\n\
  *                    the routine fell back to full precision\n\
  *               -3 : failure of CPOTRF\n\
  *               -31: stop the iterative refinement after the 30th\n\
  *                    iterations\n\
  *          > 0: iterative refinement has been successfully used.\n\
  *               Returns the number of iterations\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, the leading minor of order i of\n\
  *                (COMPLEX*16) A is not positive definite, so the\n\
  *                factorization could not be completed, and the solution\n\
  *                has not been computed.\n\
  *\n\
  *  =========\n\
  *\n"
 |