1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
---
:name: zgebak
:md5sum: 91449be85cde6d98723559584ca26ef6
:category: :subroutine
:arguments:
- job:
:type: char
:intent: input
- side:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: input
- ihi:
:type: integer
:intent: input
- scale:
:type: doublereal
:intent: input
:dims:
- n
- m:
:type: integer
:intent: input
- v:
:type: doublecomplex
:intent: input/output
:dims:
- ldv
- m
- ldv:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZGEBAK forms the right or left eigenvectors of a complex general\n\
* matrix by backward transformation on the computed eigenvectors of the\n\
* balanced matrix output by ZGEBAL.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOB (input) CHARACTER*1\n\
* Specifies the type of backward transformation required:\n\
* = 'N', do nothing, return immediately;\n\
* = 'P', do backward transformation for permutation only;\n\
* = 'S', do backward transformation for scaling only;\n\
* = 'B', do backward transformations for both permutation and\n\
* scaling.\n\
* JOB must be the same as the argument JOB supplied to ZGEBAL.\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'R': V contains right eigenvectors;\n\
* = 'L': V contains left eigenvectors.\n\
*\n\
* N (input) INTEGER\n\
* The number of rows of the matrix V. N >= 0.\n\
*\n\
* ILO (input) INTEGER\n\
* IHI (input) INTEGER\n\
* The integers ILO and IHI determined by ZGEBAL.\n\
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n\
*\n\
* SCALE (input) DOUBLE PRECISION array, dimension (N)\n\
* Details of the permutation and scaling factors, as returned\n\
* by ZGEBAL.\n\
*\n\
* M (input) INTEGER\n\
* The number of columns of the matrix V. M >= 0.\n\
*\n\
* V (input/output) COMPLEX*16 array, dimension (LDV,M)\n\
* On entry, the matrix of right or left eigenvectors to be\n\
* transformed, as returned by ZHSEIN or ZTREVC.\n\
* On exit, V is overwritten by the transformed eigenvectors.\n\
*\n\
* LDV (input) INTEGER\n\
* The leading dimension of the array V. LDV >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* =====================================================================\n\
*\n"
|