1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
---
:name: zgebd2
:md5sum: a34f063a4eed461697dd095a39a0e253
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- d:
:type: doublereal
:intent: output
:dims:
- MIN(m,n)
- e:
:type: doublereal
:intent: output
:dims:
- MIN(m,n)-1
- tauq:
:type: doublecomplex
:intent: output
:dims:
- MIN(m,n)
- taup:
:type: doublecomplex
:intent: output
:dims:
- MIN(m,n)
- work:
:type: doublecomplex
:intent: workspace
:dims:
- MAX(m,n)
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZGEBD2 reduces a complex general m by n matrix A to upper or lower\n\
* real bidiagonal form B by a unitary transformation: Q' * A * P = B.\n\
*\n\
* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows in the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns in the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
* On entry, the m by n general matrix to be reduced.\n\
* On exit,\n\
* if m >= n, the diagonal and the first superdiagonal are\n\
* overwritten with the upper bidiagonal matrix B; the\n\
* elements below the diagonal, with the array TAUQ, represent\n\
* the unitary matrix Q as a product of elementary\n\
* reflectors, and the elements above the first superdiagonal,\n\
* with the array TAUP, represent the unitary matrix P as\n\
* a product of elementary reflectors;\n\
* if m < n, the diagonal and the first subdiagonal are\n\
* overwritten with the lower bidiagonal matrix B; the\n\
* elements below the first subdiagonal, with the array TAUQ,\n\
* represent the unitary matrix Q as a product of\n\
* elementary reflectors, and the elements above the diagonal,\n\
* with the array TAUP, represent the unitary matrix P as\n\
* a product of elementary reflectors.\n\
* See Further Details.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* D (output) DOUBLE PRECISION array, dimension (min(M,N))\n\
* The diagonal elements of the bidiagonal matrix B:\n\
* D(i) = A(i,i).\n\
*\n\
* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)\n\
* The off-diagonal elements of the bidiagonal matrix B:\n\
* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;\n\
* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.\n\
*\n\
* TAUQ (output) COMPLEX*16 array dimension (min(M,N))\n\
* The scalar factors of the elementary reflectors which\n\
* represent the unitary matrix Q. See Further Details.\n\
*\n\
* TAUP (output) COMPLEX*16 array, dimension (min(M,N))\n\
* The scalar factors of the elementary reflectors which\n\
* represent the unitary matrix P. See Further Details.\n\
*\n\
* WORK (workspace) COMPLEX*16 array, dimension (max(M,N))\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrices Q and P are represented as products of elementary\n\
* reflectors:\n\
*\n\
* If m >= n,\n\
*\n\
* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)\n\
*\n\
* Each H(i) and G(i) has the form:\n\
*\n\
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'\n\
*\n\
* where tauq and taup are complex scalars, and v and u are complex\n\
* vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in\n\
* A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in\n\
* A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
*\n\
* If m < n,\n\
*\n\
* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)\n\
*\n\
* Each H(i) and G(i) has the form:\n\
*\n\
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'\n\
*\n\
* where tauq and taup are complex scalars, v and u are complex vectors;\n\
* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);\n\
* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);\n\
* tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
*\n\
* The contents of A on exit are illustrated by the following examples:\n\
*\n\
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):\n\
*\n\
* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )\n\
* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )\n\
* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )\n\
* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )\n\
* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )\n\
* ( v1 v2 v3 v4 v5 )\n\
*\n\
* where d and e denote diagonal and off-diagonal elements of B, vi\n\
* denotes an element of the vector defining H(i), and ui an element of\n\
* the vector defining G(i).\n\
*\n\
* =====================================================================\n\
*\n"
|