File: zgebd2

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (162 lines) | stat: -rw-r--r-- 5,819 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
--- 
:name: zgebd2
:md5sum: a34f063a4eed461697dd095a39a0e253
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: output
    :dims: 
    - MIN(m,n)
- e: 
    :type: doublereal
    :intent: output
    :dims: 
    - MIN(m,n)-1
- tauq: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - MIN(m,n)
- taup: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - MIN(m,n)
- work: 
    :type: doublecomplex
    :intent: workspace
    :dims: 
    - MAX(m,n)
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZGEBD2 reduces a complex general m by n matrix A to upper or lower\n\
  *  real bidiagonal form B by a unitary transformation: Q' * A * P = B.\n\
  *\n\
  *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows in the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns in the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
  *          On entry, the m by n general matrix to be reduced.\n\
  *          On exit,\n\
  *          if m >= n, the diagonal and the first superdiagonal are\n\
  *            overwritten with the upper bidiagonal matrix B; the\n\
  *            elements below the diagonal, with the array TAUQ, represent\n\
  *            the unitary matrix Q as a product of elementary\n\
  *            reflectors, and the elements above the first superdiagonal,\n\
  *            with the array TAUP, represent the unitary matrix P as\n\
  *            a product of elementary reflectors;\n\
  *          if m < n, the diagonal and the first subdiagonal are\n\
  *            overwritten with the lower bidiagonal matrix B; the\n\
  *            elements below the first subdiagonal, with the array TAUQ,\n\
  *            represent the unitary matrix Q as a product of\n\
  *            elementary reflectors, and the elements above the diagonal,\n\
  *            with the array TAUP, represent the unitary matrix P as\n\
  *            a product of elementary reflectors.\n\
  *          See Further Details.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  D       (output) DOUBLE PRECISION array, dimension (min(M,N))\n\
  *          The diagonal elements of the bidiagonal matrix B:\n\
  *          D(i) = A(i,i).\n\
  *\n\
  *  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)\n\
  *          The off-diagonal elements of the bidiagonal matrix B:\n\
  *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;\n\
  *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.\n\
  *\n\
  *  TAUQ    (output) COMPLEX*16 array dimension (min(M,N))\n\
  *          The scalar factors of the elementary reflectors which\n\
  *          represent the unitary matrix Q. See Further Details.\n\
  *\n\
  *  TAUP    (output) COMPLEX*16 array, dimension (min(M,N))\n\
  *          The scalar factors of the elementary reflectors which\n\
  *          represent the unitary matrix P. See Further Details.\n\
  *\n\
  *  WORK    (workspace) COMPLEX*16 array, dimension (max(M,N))\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The matrices Q and P are represented as products of elementary\n\
  *  reflectors:\n\
  *\n\
  *  If m >= n,\n\
  *\n\
  *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)\n\
  *\n\
  *  Each H(i) and G(i) has the form:\n\
  *\n\
  *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'\n\
  *\n\
  *  where tauq and taup are complex scalars, and v and u are complex\n\
  *  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in\n\
  *  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in\n\
  *  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
  *\n\
  *  If m < n,\n\
  *\n\
  *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)\n\
  *\n\
  *  Each H(i) and G(i) has the form:\n\
  *\n\
  *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'\n\
  *\n\
  *  where tauq and taup are complex scalars, v and u are complex vectors;\n\
  *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);\n\
  *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);\n\
  *  tauq is stored in TAUQ(i) and taup in TAUP(i).\n\
  *\n\
  *  The contents of A on exit are illustrated by the following examples:\n\
  *\n\
  *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):\n\
  *\n\
  *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )\n\
  *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )\n\
  *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )\n\
  *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )\n\
  *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )\n\
  *    (  v1  v2  v3  v4  v5 )\n\
  *\n\
  *  where d and e denote diagonal and off-diagonal elements of B, vi\n\
  *  denotes an element of the vector defining H(i), and ui an element of\n\
  *  the vector defining G(i).\n\
  *\n\
  *  =====================================================================\n\
  *\n"