File: zgels

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (157 lines) | stat: -rw-r--r-- 5,830 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
--- 
:name: zgels
:md5sum: d543f789adef7ad831c7880fbac31097
:category: :subroutine
:arguments: 
- trans: 
    :type: char
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - m
    - nrhs
    :outdims:
    - n
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- work: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: MIN(m,n) + MAX(MIN(m,n),nrhs)
- info: 
    :type: integer
    :intent: output
:substitutions: 
  m: lda
  ldb: MAX(m,n)
:fortran_help: "      SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZGELS solves overdetermined or underdetermined complex linear systems\n\
  *  involving an M-by-N matrix A, or its conjugate-transpose, using a QR\n\
  *  or LQ factorization of A.  It is assumed that A has full rank.\n\
  *\n\
  *  The following options are provided:\n\
  *\n\
  *  1. If TRANS = 'N' and m >= n:  find the least squares solution of\n\
  *     an overdetermined system, i.e., solve the least squares problem\n\
  *                  minimize || B - A*X ||.\n\
  *\n\
  *  2. If TRANS = 'N' and m < n:  find the minimum norm solution of\n\
  *     an underdetermined system A * X = B.\n\
  *\n\
  *  3. If TRANS = 'C' and m >= n:  find the minimum norm solution of\n\
  *     an undetermined system A**H * X = B.\n\
  *\n\
  *  4. If TRANS = 'C' and m < n:  find the least squares solution of\n\
  *     an overdetermined system, i.e., solve the least squares problem\n\
  *                  minimize || B - A**H * X ||.\n\
  *\n\
  *  Several right hand side vectors b and solution vectors x can be\n\
  *  handled in a single call; they are stored as the columns of the\n\
  *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution\n\
  *  matrix X.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  TRANS   (input) CHARACTER*1\n\
  *          = 'N': the linear system involves A;\n\
  *          = 'C': the linear system involves A**H.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of\n\
  *          columns of the matrices B and X. NRHS >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
  *          On entry, the M-by-N matrix A.\n\
  *            if M >= N, A is overwritten by details of its QR\n\
  *                       factorization as returned by ZGEQRF;\n\
  *            if M <  N, A is overwritten by details of its LQ\n\
  *                       factorization as returned by ZGELQF.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n\
  *          On entry, the matrix B of right hand side vectors, stored\n\
  *          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS\n\
  *          if TRANS = 'C'.\n\
  *          On exit, if INFO = 0, B is overwritten by the solution\n\
  *          vectors, stored columnwise:\n\
  *          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least\n\
  *          squares solution vectors; the residual sum of squares for the\n\
  *          solution in each column is given by the sum of squares of the\n\
  *          modulus of elements N+1 to M in that column;\n\
  *          if TRANS = 'N' and m < n, rows 1 to N of B contain the\n\
  *          minimum norm solution vectors;\n\
  *          if TRANS = 'C' and m >= n, rows 1 to M of B contain the\n\
  *          minimum norm solution vectors;\n\
  *          if TRANS = 'C' and m < n, rows 1 to M of B contain the\n\
  *          least squares solution vectors; the residual sum of squares\n\
  *          for the solution in each column is given by the sum of\n\
  *          squares of the modulus of elements M+1 to N in that column.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= MAX(1,M,N).\n\
  *\n\
  *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK.\n\
  *          LWORK >= max( 1, MN + max( MN, NRHS ) ).\n\
  *          For optimal performance,\n\
  *          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).\n\
  *          where MN = min(M,N) and NB is the optimum block size.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO =  i, the i-th diagonal element of the\n\
  *                triangular factor of A is zero, so that A does not have\n\
  *                full rank; the least squares solution could not be\n\
  *                computed.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"