1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
---
:name: zhecon
:md5sum: a7a7115b4ebb274e00fbe09d609df27c
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- ipiv:
:type: integer
:intent: input
:dims:
- n
- anorm:
:type: doublereal
:intent: input
- rcond:
:type: doublereal
:intent: output
- work:
:type: doublecomplex
:intent: workspace
:dims:
- 2*n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZHECON( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZHECON estimates the reciprocal of the condition number of a complex\n\
* Hermitian matrix A using the factorization A = U*D*U**H or\n\
* A = L*D*L**H computed by ZHETRF.\n\
*\n\
* An estimate is obtained for norm(inv(A)), and the reciprocal of the\n\
* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies whether the details of the factorization are stored\n\
* as an upper or lower triangular matrix.\n\
* = 'U': Upper triangular, form is A = U*D*U**H;\n\
* = 'L': Lower triangular, form is A = L*D*L**H.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input) COMPLEX*16 array, dimension (LDA,N)\n\
* The block diagonal matrix D and the multipliers used to\n\
* obtain the factor U or L as computed by ZHETRF.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* IPIV (input) INTEGER array, dimension (N)\n\
* Details of the interchanges and the block structure of D\n\
* as determined by ZHETRF.\n\
*\n\
* ANORM (input) DOUBLE PRECISION\n\
* The 1-norm of the original matrix A.\n\
*\n\
* RCOND (output) DOUBLE PRECISION\n\
* The reciprocal of the condition number of the matrix A,\n\
* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an\n\
* estimate of the 1-norm of inv(A) computed in this routine.\n\
*\n\
* WORK (workspace) COMPLEX*16 array, dimension (2*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n"
|