File: zhecon

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (91 lines) | stat: -rw-r--r-- 2,724 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
--- 
:name: zhecon
:md5sum: a7a7115b4ebb274e00fbe09d609df27c
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- ipiv: 
    :type: integer
    :intent: input
    :dims: 
    - n
- anorm: 
    :type: doublereal
    :intent: input
- rcond: 
    :type: doublereal
    :intent: output
- work: 
    :type: doublecomplex
    :intent: workspace
    :dims: 
    - 2*n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZHECON( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZHECON estimates the reciprocal of the condition number of a complex\n\
  *  Hermitian matrix A using the factorization A = U*D*U**H or\n\
  *  A = L*D*L**H computed by ZHETRF.\n\
  *\n\
  *  An estimate is obtained for norm(inv(A)), and the reciprocal of the\n\
  *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          Specifies whether the details of the factorization are stored\n\
  *          as an upper or lower triangular matrix.\n\
  *          = 'U':  Upper triangular, form is A = U*D*U**H;\n\
  *          = 'L':  Lower triangular, form is A = L*D*L**H.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input) COMPLEX*16 array, dimension (LDA,N)\n\
  *          The block diagonal matrix D and the multipliers used to\n\
  *          obtain the factor U or L as computed by ZHETRF.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  IPIV    (input) INTEGER array, dimension (N)\n\
  *          Details of the interchanges and the block structure of D\n\
  *          as determined by ZHETRF.\n\
  *\n\
  *  ANORM   (input) DOUBLE PRECISION\n\
  *          The 1-norm of the original matrix A.\n\
  *\n\
  *  RCOND   (output) DOUBLE PRECISION\n\
  *          The reciprocal of the condition number of the matrix A,\n\
  *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an\n\
  *          estimate of the 1-norm of inv(A) computed in this routine.\n\
  *\n\
  *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"