| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 
 | --- 
:name: zheevr
:md5sum: f47d50a9af6c562dfda0198807baa560
:category: :subroutine
:arguments: 
- jobz: 
    :type: char
    :intent: input
- range: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- vl: 
    :type: doublereal
    :intent: input
- vu: 
    :type: doublereal
    :intent: input
- il: 
    :type: integer
    :intent: input
- iu: 
    :type: integer
    :intent: input
- abstol: 
    :type: doublereal
    :intent: input
- m: 
    :type: integer
    :intent: output
- w: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- z: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - ldz
    - MAX(1,m)
- ldz: 
    :type: integer
    :intent: input
- isuppz: 
    :type: integer
    :intent: output
    :dims: 
    - 2*MAX(1,m)
- work: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: 2*n
- rwork: 
    :type: doublereal
    :intent: output
    :dims: 
    - MAX(1,lrwork)
- lrwork: 
    :type: integer
    :intent: input
    :option: true
    :default: 24*n
- iwork: 
    :type: integer
    :intent: output
    :dims: 
    - MAX(1,liwork)
- liwork: 
    :type: integer
    :intent: input
    :option: true
    :default: 10*n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
  m: "lsame_(&range,\"A\") ? n : lsame_(&range,\"I\") ? iu-il+1 : 0"
:fortran_help: "      SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZHEEVR computes selected eigenvalues and, optionally, eigenvectors\n\
  *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can\n\
  *  be selected by specifying either a range of values or a range of\n\
  *  indices for the desired eigenvalues.\n\
  *\n\
  *  ZHEEVR first reduces the matrix A to tridiagonal form T with a call\n\
  *  to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute\n\
  *  eigenspectrum using Relatively Robust Representations.  ZSTEMR\n\
  *  computes eigenvalues by the dqds algorithm, while orthogonal\n\
  *  eigenvectors are computed from various \"good\" L D L^T representations\n\
  *  (also known as Relatively Robust Representations). Gram-Schmidt\n\
  *  orthogonalization is avoided as far as possible. More specifically,\n\
  *  the various steps of the algorithm are as follows.\n\
  *\n\
  *  For each unreduced block (submatrix) of T,\n\
  *     (a) Compute T - sigma I  = L D L^T, so that L and D\n\
  *         define all the wanted eigenvalues to high relative accuracy.\n\
  *         This means that small relative changes in the entries of D and L\n\
  *         cause only small relative changes in the eigenvalues and\n\
  *         eigenvectors. The standard (unfactored) representation of the\n\
  *         tridiagonal matrix T does not have this property in general.\n\
  *     (b) Compute the eigenvalues to suitable accuracy.\n\
  *         If the eigenvectors are desired, the algorithm attains full\n\
  *         accuracy of the computed eigenvalues only right before\n\
  *         the corresponding vectors have to be computed, see steps c) and d).\n\
  *     (c) For each cluster of close eigenvalues, select a new\n\
  *         shift close to the cluster, find a new factorization, and refine\n\
  *         the shifted eigenvalues to suitable accuracy.\n\
  *     (d) For each eigenvalue with a large enough relative separation compute\n\
  *         the corresponding eigenvector by forming a rank revealing twisted\n\
  *         factorization. Go back to (c) for any clusters that remain.\n\
  *\n\
  *  The desired accuracy of the output can be specified by the input\n\
  *  parameter ABSTOL.\n\
  *\n\
  *  For more details, see DSTEMR's documentation and:\n\
  *  - Inderjit S. Dhillon and Beresford N. Parlett: \"Multiple representations\n\
  *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,\"\n\
  *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.\n\
  *  - Inderjit Dhillon and Beresford Parlett: \"Orthogonal Eigenvectors and\n\
  *    Relative Gaps,\" SIAM Journal on Matrix Analysis and Applications, Vol. 25,\n\
  *    2004.  Also LAPACK Working Note 154.\n\
  *  - Inderjit Dhillon: \"A new O(n^2) algorithm for the symmetric\n\
  *    tridiagonal eigenvalue/eigenvector problem\",\n\
  *    Computer Science Division Technical Report No. UCB/CSD-97-971,\n\
  *    UC Berkeley, May 1997.\n\
  *\n\
  *\n\
  *  Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested\n\
  *  on machines which conform to the ieee-754 floating point standard.\n\
  *  ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and\n\
  *  when partial spectrum requests are made.\n\
  *\n\
  *  Normal execution of ZSTEMR may create NaNs and infinities and\n\
  *  hence may abort due to a floating point exception in environments\n\
  *  which do not handle NaNs and infinities in the ieee standard default\n\
  *  manner.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBZ    (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only;\n\
  *          = 'V':  Compute eigenvalues and eigenvectors.\n\
  *\n\
  *  RANGE   (input) CHARACTER*1\n\
  *          = 'A': all eigenvalues will be found.\n\
  *          = 'V': all eigenvalues in the half-open interval (VL,VU]\n\
  *                 will be found.\n\
  *          = 'I': the IL-th through IU-th eigenvalues will be found.\n\
  ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and\n\
  ********** ZSTEIN are called\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)\n\
  *          On entry, the Hermitian matrix A.  If UPLO = 'U', the\n\
  *          leading N-by-N upper triangular part of A contains the\n\
  *          upper triangular part of the matrix A.  If UPLO = 'L',\n\
  *          the leading N-by-N lower triangular part of A contains\n\
  *          the lower triangular part of the matrix A.\n\
  *          On exit, the lower triangle (if UPLO='L') or the upper\n\
  *          triangle (if UPLO='U') of A, including the diagonal, is\n\
  *          destroyed.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  VL      (input) DOUBLE PRECISION\n\
  *  VU      (input) DOUBLE PRECISION\n\
  *          If RANGE='V', the lower and upper bounds of the interval to\n\
  *          be searched for eigenvalues. VL < VU.\n\
  *          Not referenced if RANGE = 'A' or 'I'.\n\
  *\n\
  *  IL      (input) INTEGER\n\
  *  IU      (input) INTEGER\n\
  *          If RANGE='I', the indices (in ascending order) of the\n\
  *          smallest and largest eigenvalues to be returned.\n\
  *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n\
  *          Not referenced if RANGE = 'A' or 'V'.\n\
  *\n\
  *  ABSTOL  (input) DOUBLE PRECISION\n\
  *          The absolute error tolerance for the eigenvalues.\n\
  *          An approximate eigenvalue is accepted as converged\n\
  *          when it is determined to lie in an interval [a,b]\n\
  *          of width less than or equal to\n\
  *\n\
  *                  ABSTOL + EPS *   max( |a|,|b| ) ,\n\
  *\n\
  *          where EPS is the machine precision.  If ABSTOL is less than\n\
  *          or equal to zero, then  EPS*|T|  will be used in its place,\n\
  *          where |T| is the 1-norm of the tridiagonal matrix obtained\n\
  *          by reducing A to tridiagonal form.\n\
  *\n\
  *          See \"Computing Small Singular Values of Bidiagonal Matrices\n\
  *          with Guaranteed High Relative Accuracy,\" by Demmel and\n\
  *          Kahan, LAPACK Working Note #3.\n\
  *\n\
  *          If high relative accuracy is important, set ABSTOL to\n\
  *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that\n\
  *          eigenvalues are computed to high relative accuracy when\n\
  *          possible in future releases.  The current code does not\n\
  *          make any guarantees about high relative accuracy, but\n\
  *          furutre releases will. See J. Barlow and J. Demmel,\n\
  *          \"Computing Accurate Eigensystems of Scaled Diagonally\n\
  *          Dominant Matrices\", LAPACK Working Note #7, for a discussion\n\
  *          of which matrices define their eigenvalues to high relative\n\
  *          accuracy.\n\
  *\n\
  *  M       (output) INTEGER\n\
  *          The total number of eigenvalues found.  0 <= M <= N.\n\
  *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.\n\
  *\n\
  *  W       (output) DOUBLE PRECISION array, dimension (N)\n\
  *          The first M elements contain the selected eigenvalues in\n\
  *          ascending order.\n\
  *\n\
  *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))\n\
  *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z\n\
  *          contain the orthonormal eigenvectors of the matrix A\n\
  *          corresponding to the selected eigenvalues, with the i-th\n\
  *          column of Z holding the eigenvector associated with W(i).\n\
  *          If JOBZ = 'N', then Z is not referenced.\n\
  *          Note: the user must ensure that at least max(1,M) columns are\n\
  *          supplied in the array Z; if RANGE = 'V', the exact value of M\n\
  *          is not known in advance and an upper bound must be used.\n\
  *\n\
  *  LDZ     (input) INTEGER\n\
  *          The leading dimension of the array Z.  LDZ >= 1, and if\n\
  *          JOBZ = 'V', LDZ >= max(1,N).\n\
  *\n\
  *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )\n\
  *          The support of the eigenvectors in Z, i.e., the indices\n\
  *          indicating the nonzero elements in Z. The i-th eigenvector\n\
  *          is nonzero only in elements ISUPPZ( 2*i-1 ) through\n\
  *          ISUPPZ( 2*i ).\n\
  ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1\n\
  *\n\
  *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The length of the array WORK.  LWORK >= max(1,2*N).\n\
  *          For optimal efficiency, LWORK >= (NB+1)*N,\n\
  *          where NB is the max of the blocksize for ZHETRD and for\n\
  *          ZUNMTR as returned by ILAENV.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal sizes of the WORK, RWORK and\n\
  *          IWORK arrays, returns these values as the first entries of\n\
  *          the WORK, RWORK and IWORK arrays, and no error message\n\
  *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
  *\n\
  *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))\n\
  *          On exit, if INFO = 0, RWORK(1) returns the optimal\n\
  *          (and minimal) LRWORK.\n\
  *\n\
  * LRWORK   (input) INTEGER\n\
  *          The length of the array RWORK.  LRWORK >= max(1,24*N).\n\
  *\n\
  *          If LRWORK = -1, then a workspace query is assumed; the\n\
  *          routine only calculates the optimal sizes of the WORK, RWORK\n\
  *          and IWORK arrays, returns these values as the first entries\n\
  *          of the WORK, RWORK and IWORK arrays, and no error message\n\
  *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
  *\n\
  *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n\
  *          On exit, if INFO = 0, IWORK(1) returns the optimal\n\
  *          (and minimal) LIWORK.\n\
  *\n\
  * LIWORK   (input) INTEGER\n\
  *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).\n\
  *\n\
  *          If LIWORK = -1, then a workspace query is assumed; the\n\
  *          routine only calculates the optimal sizes of the WORK, RWORK\n\
  *          and IWORK arrays, returns these values as the first entries\n\
  *          of the WORK, RWORK and IWORK arrays, and no error message\n\
  *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  Internal error\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Inderjit Dhillon, IBM Almaden, USA\n\
  *     Osni Marques, LBNL/NERSC, USA\n\
  *     Ken Stanley, Computer Science Division, University of\n\
  *       California at Berkeley, USA\n\
  *     Jason Riedy, Computer Science Division, University of\n\
  *       California at Berkeley, USA\n\
  *\n\
  * =====================================================================\n\
  *\n"
 |