1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
---
:name: zhegst
:md5sum: c20dbdb32438b9794fb86eb0c5c5348d
:category: :subroutine
:arguments:
- itype:
:type: integer
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: doublecomplex
:intent: input
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZHEGST reduces a complex Hermitian-definite generalized\n\
* eigenproblem to standard form.\n\
*\n\
* If ITYPE = 1, the problem is A*x = lambda*B*x,\n\
* and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)\n\
*\n\
* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or\n\
* B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.\n\
*\n\
* B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* ITYPE (input) INTEGER\n\
* = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);\n\
* = 2 or 3: compute U*A*U**H or L**H*A*L.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored and B is factored as\n\
* U**H*U;\n\
* = 'L': Lower triangle of A is stored and B is factored as\n\
* L*L**H.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n\
* N-by-N upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading N-by-N lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
*\n\
* On exit, if INFO = 0, the transformed matrix, stored in the\n\
* same format as A.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input) COMPLEX*16 array, dimension (LDB,N)\n\
* The triangular factor from the Cholesky factorization of B,\n\
* as returned by ZPOTRF.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n"
|