File: zhegst

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (96 lines) | stat: -rw-r--r-- 3,057 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
--- 
:name: zhegst
:md5sum: c20dbdb32438b9794fb86eb0c5c5348d
:category: :subroutine
:arguments: 
- itype: 
    :type: integer
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZHEGST reduces a complex Hermitian-definite generalized\n\
  *  eigenproblem to standard form.\n\
  *\n\
  *  If ITYPE = 1, the problem is A*x = lambda*B*x,\n\
  *  and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)\n\
  *\n\
  *  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or\n\
  *  B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.\n\
  *\n\
  *  B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  ITYPE   (input) INTEGER\n\
  *          = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);\n\
  *          = 2 or 3: compute U*A*U**H or L**H*A*L.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored and B is factored as\n\
  *                  U**H*U;\n\
  *          = 'L':  Lower triangle of A is stored and B is factored as\n\
  *                  L*L**H.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A and B.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
  *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading\n\
  *          N-by-N upper triangular part of A contains the upper\n\
  *          triangular part of the matrix A, and the strictly lower\n\
  *          triangular part of A is not referenced.  If UPLO = 'L', the\n\
  *          leading N-by-N lower triangular part of A contains the lower\n\
  *          triangular part of the matrix A, and the strictly upper\n\
  *          triangular part of A is not referenced.\n\
  *\n\
  *          On exit, if INFO = 0, the transformed matrix, stored in the\n\
  *          same format as A.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  B       (input) COMPLEX*16 array, dimension (LDB,N)\n\
  *          The triangular factor from the Cholesky factorization of B,\n\
  *          as returned by ZPOTRF.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"