1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
---
:name: zlanhe
:md5sum: 1b2b837bfeae7c4b9e9012d4e8676435
:category: :function
:type: doublereal
:arguments:
- norm:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- MAX(1,lwork)
:substitutions:
lwork: "((lsame_(&norm,\"I\")) || ((('1') || ('o')))) ? n : 0"
:fortran_help: " DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZLANHE returns the value of the one norm, or the Frobenius norm, or\n\
* the infinity norm, or the element of largest absolute value of a\n\
* complex hermitian matrix A.\n\
*\n\
* Description\n\
* ===========\n\
*\n\
* ZLANHE returns the value\n\
*\n\
* ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
* (\n\
* ( norm1(A), NORM = '1', 'O' or 'o'\n\
* (\n\
* ( normI(A), NORM = 'I' or 'i'\n\
* (\n\
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n\
*\n\
* where norm1 denotes the one norm of a matrix (maximum column sum),\n\
* normI denotes the infinity norm of a matrix (maximum row sum) and\n\
* normF denotes the Frobenius norm of a matrix (square root of sum of\n\
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* NORM (input) CHARACTER*1\n\
* Specifies the value to be returned in ZLANHE as described\n\
* above.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies whether the upper or lower triangular part of the\n\
* hermitian matrix A is to be referenced.\n\
* = 'U': Upper triangular part of A is referenced\n\
* = 'L': Lower triangular part of A is referenced\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0. When N = 0, ZLANHE is\n\
* set to zero.\n\
*\n\
* A (input) COMPLEX*16 array, dimension (LDA,N)\n\
* The hermitian matrix A. If UPLO = 'U', the leading n by n\n\
* upper triangular part of A contains the upper triangular part\n\
* of the matrix A, and the strictly lower triangular part of A\n\
* is not referenced. If UPLO = 'L', the leading n by n lower\n\
* triangular part of A contains the lower triangular part of\n\
* the matrix A, and the strictly upper triangular part of A is\n\
* not referenced. Note that the imaginary parts of the diagonal\n\
* elements need not be set and are assumed to be zero.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(N,1).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),\n\
* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n\
* WORK is not referenced.\n\
*\n\n\
* =====================================================================\n\
*\n"
|