File: zlanhe

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (93 lines) | stat: -rw-r--r-- 3,298 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
--- 
:name: zlanhe
:md5sum: 1b2b837bfeae7c4b9e9012d4e8676435
:category: :function
:type: doublereal
:arguments: 
- norm: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - MAX(1,lwork)
:substitutions: 
  lwork: "((lsame_(&norm,\"I\")) || ((('1') || ('o')))) ? n : 0"
:fortran_help: "      DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZLANHE  returns the value of the one norm,  or the Frobenius norm, or\n\
  *  the  infinity norm,  or the  element of  largest absolute value  of a\n\
  *  complex hermitian matrix A.\n\
  *\n\
  *  Description\n\
  *  ===========\n\
  *\n\
  *  ZLANHE returns the value\n\
  *\n\
  *     ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
  *              (\n\
  *              ( norm1(A),         NORM = '1', 'O' or 'o'\n\
  *              (\n\
  *              ( normI(A),         NORM = 'I' or 'i'\n\
  *              (\n\
  *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'\n\
  *\n\
  *  where  norm1  denotes the  one norm of a matrix (maximum column sum),\n\
  *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and\n\
  *  normF  denotes the  Frobenius norm of a matrix (square root of sum of\n\
  *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  NORM    (input) CHARACTER*1\n\
  *          Specifies the value to be returned in ZLANHE as described\n\
  *          above.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          Specifies whether the upper or lower triangular part of the\n\
  *          hermitian matrix A is to be referenced.\n\
  *          = 'U':  Upper triangular part of A is referenced\n\
  *          = 'L':  Lower triangular part of A is referenced\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is\n\
  *          set to zero.\n\
  *\n\
  *  A       (input) COMPLEX*16 array, dimension (LDA,N)\n\
  *          The hermitian matrix A.  If UPLO = 'U', the leading n by n\n\
  *          upper triangular part of A contains the upper triangular part\n\
  *          of the matrix A, and the strictly lower triangular part of A\n\
  *          is not referenced.  If UPLO = 'L', the leading n by n lower\n\
  *          triangular part of A contains the lower triangular part of\n\
  *          the matrix A, and the strictly upper triangular part of A is\n\
  *          not referenced. Note that the imaginary parts of the diagonal\n\
  *          elements need not be set and are assumed to be zero.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(N,1).\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),\n\
  *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,\n\
  *          WORK is not referenced.\n\
  *\n\n\
  * =====================================================================\n\
  *\n"