1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
---
:name: zlaqr2
:md5sum: ffeac35e8baa8da04e2b19326ee08e26
:category: :subroutine
:arguments:
- wantt:
:type: logical
:intent: input
- wantz:
:type: logical
:intent: input
- n:
:type: integer
:intent: input
- ktop:
:type: integer
:intent: input
- kbot:
:type: integer
:intent: input
- nw:
:type: integer
:intent: input
- h:
:type: doublecomplex
:intent: input/output
:dims:
- ldh
- n
- ldh:
:type: integer
:intent: input
- iloz:
:type: integer
:intent: input
- ihiz:
:type: integer
:intent: input
- z:
:type: doublecomplex
:intent: input/output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- ns:
:type: integer
:intent: output
- nd:
:type: integer
:intent: output
- sh:
:type: doublecomplex
:intent: output
:dims:
- MAX(1,kbot)
- v:
:type: doublecomplex
:intent: workspace
:dims:
- ldv
- MAX(1,nw)
- ldv:
:type: integer
:intent: input
- nh:
:type: integer
:intent: input
- t:
:type: doublecomplex
:intent: workspace
:dims:
- ldv
- MAX(1,nw)
- ldt:
:type: integer
:intent: input
- nv:
:type: integer
:intent: input
- wv:
:type: doublecomplex
:intent: workspace
:dims:
- ldv
- MAX(1,nw)
- ldwv:
:type: integer
:intent: input
- work:
:type: doublecomplex
:intent: workspace
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: 2*nw
:substitutions:
ldwv: nw
ldt: nw
ldv: nw
:fortran_help: " SUBROUTINE ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, NV, WV, LDWV, WORK, LWORK )\n\n\
* This subroutine is identical to ZLAQR3 except that it avoids\n\
* recursion by calling ZLAHQR instead of ZLAQR4.\n\
*\n\
*\n\
* ******************************************************************\n\
* Aggressive early deflation:\n\
*\n\
* This subroutine accepts as input an upper Hessenberg matrix\n\
* H and performs an unitary similarity transformation\n\
* designed to detect and deflate fully converged eigenvalues from\n\
* a trailing principal submatrix. On output H has been over-\n\
* written by a new Hessenberg matrix that is a perturbation of\n\
* an unitary similarity transformation of H. It is to be\n\
* hoped that the final version of H has many zero subdiagonal\n\
* entries.\n\
*\n\
* ******************************************************************\n\n\
* WANTT (input) LOGICAL\n\
* If .TRUE., then the Hessenberg matrix H is fully updated\n\
* so that the triangular Schur factor may be\n\
* computed (in cooperation with the calling subroutine).\n\
* If .FALSE., then only enough of H is updated to preserve\n\
* the eigenvalues.\n\
*\n\
* WANTZ (input) LOGICAL\n\
* If .TRUE., then the unitary matrix Z is updated so\n\
* so that the unitary Schur factor may be computed\n\
* (in cooperation with the calling subroutine).\n\
* If .FALSE., then Z is not referenced.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix H and (if WANTZ is .TRUE.) the\n\
* order of the unitary matrix Z.\n\
*\n\
* KTOP (input) INTEGER\n\
* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.\n\
* KBOT and KTOP together determine an isolated block\n\
* along the diagonal of the Hessenberg matrix.\n\
*\n\
* KBOT (input) INTEGER\n\
* It is assumed without a check that either\n\
* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together\n\
* determine an isolated block along the diagonal of the\n\
* Hessenberg matrix.\n\
*\n\
* NW (input) INTEGER\n\
* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).\n\
*\n\
* H (input/output) COMPLEX*16 array, dimension (LDH,N)\n\
* On input the initial N-by-N section of H stores the\n\
* Hessenberg matrix undergoing aggressive early deflation.\n\
* On output H has been transformed by a unitary\n\
* similarity transformation, perturbed, and the returned\n\
* to Hessenberg form that (it is to be hoped) has some\n\
* zero subdiagonal entries.\n\
*\n\
* LDH (input) integer\n\
* Leading dimension of H just as declared in the calling\n\
* subroutine. N .LE. LDH\n\
*\n\
* ILOZ (input) INTEGER\n\
* IHIZ (input) INTEGER\n\
* Specify the rows of Z to which transformations must be\n\
* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.\n\
*\n\
* Z (input/output) COMPLEX*16 array, dimension (LDZ,N)\n\
* IF WANTZ is .TRUE., then on output, the unitary\n\
* similarity transformation mentioned above has been\n\
* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.\n\
* If WANTZ is .FALSE., then Z is unreferenced.\n\
*\n\
* LDZ (input) integer\n\
* The leading dimension of Z just as declared in the\n\
* calling subroutine. 1 .LE. LDZ.\n\
*\n\
* NS (output) integer\n\
* The number of unconverged (ie approximate) eigenvalues\n\
* returned in SR and SI that may be used as shifts by the\n\
* calling subroutine.\n\
*\n\
* ND (output) integer\n\
* The number of converged eigenvalues uncovered by this\n\
* subroutine.\n\
*\n\
* SH (output) COMPLEX*16 array, dimension KBOT\n\
* On output, approximate eigenvalues that may\n\
* be used for shifts are stored in SH(KBOT-ND-NS+1)\n\
* through SR(KBOT-ND). Converged eigenvalues are\n\
* stored in SH(KBOT-ND+1) through SH(KBOT).\n\
*\n\
* V (workspace) COMPLEX*16 array, dimension (LDV,NW)\n\
* An NW-by-NW work array.\n\
*\n\
* LDV (input) integer scalar\n\
* The leading dimension of V just as declared in the\n\
* calling subroutine. NW .LE. LDV\n\
*\n\
* NH (input) integer scalar\n\
* The number of columns of T. NH.GE.NW.\n\
*\n\
* T (workspace) COMPLEX*16 array, dimension (LDT,NW)\n\
*\n\
* LDT (input) integer\n\
* The leading dimension of T just as declared in the\n\
* calling subroutine. NW .LE. LDT\n\
*\n\
* NV (input) integer\n\
* The number of rows of work array WV available for\n\
* workspace. NV.GE.NW.\n\
*\n\
* WV (workspace) COMPLEX*16 array, dimension (LDWV,NW)\n\
*\n\
* LDWV (input) integer\n\
* The leading dimension of W just as declared in the\n\
* calling subroutine. NW .LE. LDV\n\
*\n\
* WORK (workspace) COMPLEX*16 array, dimension LWORK.\n\
* On exit, WORK(1) is set to an estimate of the optimal value\n\
* of LWORK for the given values of N, NW, KTOP and KBOT.\n\
*\n\
* LWORK (input) integer\n\
* The dimension of the work array WORK. LWORK = 2*NW\n\
* suffices, but greater efficiency may result from larger\n\
* values of LWORK.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; ZLAQR2\n\
* only estimates the optimal workspace size for the given\n\
* values of N, NW, KTOP and KBOT. The estimate is returned\n\
* in WORK(1). No error message related to LWORK is issued\n\
* by XERBLA. Neither H nor Z are accessed.\n\
*\n\n\
* ================================================================\n\
* Based on contributions by\n\
* Karen Braman and Ralph Byers, Department of Mathematics,\n\
* University of Kansas, USA\n\
*\n\
* ================================================================\n"
|