File: zpftrf

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (182 lines) | stat: -rw-r--r-- 7,109 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
--- 
:name: zpftrf
:md5sum: 61ddc3c3f976621b0f6d627166ae8a57
:category: :subroutine
:arguments: 
- transr: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZPFTRF computes the Cholesky factorization of a complex Hermitian\n\
  *  positive definite matrix A.\n\
  *\n\
  *  The factorization has the form\n\
  *     A = U**H * U,  if UPLO = 'U', or\n\
  *     A = L  * L**H,  if UPLO = 'L',\n\
  *  where U is an upper triangular matrix and L is lower triangular.\n\
  *\n\
  *  This is the block version of the algorithm, calling Level 3 BLAS.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  TRANSR    (input) CHARACTER*1\n\
  *          = 'N':  The Normal TRANSR of RFP A is stored;\n\
  *          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of RFP A is stored;\n\
  *          = 'L':  Lower triangle of RFP A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension ( N*(N+1)/2 );\n\
  *          On entry, the Hermitian matrix A in RFP format. RFP format is\n\
  *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'\n\
  *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is\n\
  *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is\n\
  *          the Conjugate-transpose of RFP A as defined when\n\
  *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as\n\
  *          follows: If UPLO = 'U' the RFP A contains the nt elements of\n\
  *          upper packed A. If UPLO = 'L' the RFP A contains the elements\n\
  *          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =\n\
  *          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N\n\
  *          is odd. See the Note below for more details.\n\
  *\n\
  *          On exit, if INFO = 0, the factor U or L from the Cholesky\n\
  *          factorization RFP A = U**H*U or RFP A = L*L**H.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, the leading minor of order i is not\n\
  *                positive definite, and the factorization could not be\n\
  *                completed.\n\
  *\n\
  *  Further Notes on RFP Format:\n\
  *  ============================\n\
  *\n\
  *  We first consider Standard Packed Format when N is even.\n\
  *  We give an example where N = 6.\n\
  *\n\
  *     AP is Upper             AP is Lower\n\
  *\n\
  *   00 01 02 03 04 05       00\n\
  *      11 12 13 14 15       10 11\n\
  *         22 23 24 25       20 21 22\n\
  *            33 34 35       30 31 32 33\n\
  *               44 45       40 41 42 43 44\n\
  *                  55       50 51 52 53 54 55\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
  *  conjugate-transpose of the first three columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
  *  conjugate-transpose of the last three columns of AP lower.\n\
  *  To denote conjugate we place -- above the element. This covers the\n\
  *  case N even and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *                                -- -- --\n\
  *        03 04 05                33 43 53\n\
  *                                   -- --\n\
  *        13 14 15                00 44 54\n\
  *                                      --\n\
  *        23 24 25                10 11 55\n\
  *\n\
  *        33 34 35                20 21 22\n\
  *        --\n\
  *        00 44 45                30 31 32\n\
  *        -- --\n\
  *        01 11 55                40 41 42\n\
  *        -- -- --\n\
  *        02 12 22                50 51 52\n\
  *\n\
  *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     -- -- -- --                -- -- -- -- -- --\n\
  *     03 13 23 33 00 01 02    33 00 10 20 30 40 50\n\
  *     -- -- -- -- --                -- -- -- -- --\n\
  *     04 14 24 34 44 11 12    43 44 11 21 31 41 51\n\
  *     -- -- -- -- -- --                -- -- -- --\n\
  *     05 15 25 35 45 55 22    53 54 55 22 32 42 52\n\
  *\n\
  *\n\
  *  We next  consider Standard Packed Format when N is odd.\n\
  *  We give an example where N = 5.\n\
  *\n\
  *     AP is Upper                 AP is Lower\n\
  *\n\
  *   00 01 02 03 04              00\n\
  *      11 12 13 14              10 11\n\
  *         22 23 24              20 21 22\n\
  *            33 34              30 31 32 33\n\
  *               44              40 41 42 43 44\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
  *  conjugate-transpose of the first two   columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
  *  conjugate-transpose of the last two   columns of AP lower.\n\
  *  To denote conjugate we place -- above the element. This covers the\n\
  *  case N odd  and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *                                   -- --\n\
  *        02 03 04                00 33 43\n\
  *                                      --\n\
  *        12 13 14                10 11 44\n\
  *\n\
  *        22 23 24                20 21 22\n\
  *        --\n\
  *        00 33 34                30 31 32\n\
  *        -- --\n\
  *        01 11 44                40 41 42\n\
  *\n\
  *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     -- -- --                   -- -- -- -- -- --\n\
  *     02 12 22 00 01             00 10 20 30 40 50\n\
  *     -- -- -- --                   -- -- -- -- --\n\
  *     03 13 23 33 11             33 11 21 31 41 51\n\
  *     -- -- -- -- --                   -- -- -- --\n\
  *     04 14 24 34 44             43 44 22 32 42 52\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"