| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 
 | --- 
:name: zposvx
:md5sum: 1f3aee2761dee9a6b8c69a6d6362d83d
:category: :subroutine
:arguments: 
- fact: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- a: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- af: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - ldaf
    - n
- ldaf: 
    :type: integer
    :intent: input
- equed: 
    :type: char
    :intent: input/output
- s: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n
- b: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- x: 
    :type: doublecomplex
    :intent: output
    :dims: 
    - ldx
    - nrhs
- ldx: 
    :type: integer
    :intent: input
- rcond: 
    :type: doublereal
    :intent: output
- ferr: 
    :type: doublereal
    :intent: output
    :dims: 
    - nrhs
- berr: 
    :type: doublereal
    :intent: output
    :dims: 
    - nrhs
- work: 
    :type: doublecomplex
    :intent: workspace
    :dims: 
    - 2*n
- rwork: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldx: MAX(1,n)
:fortran_help: "      SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to\n\
  *  compute the solution to a complex system of linear equations\n\
  *     A * X = B,\n\
  *  where A is an N-by-N Hermitian positive definite matrix and X and B\n\
  *  are N-by-NRHS matrices.\n\
  *\n\
  *  Error bounds on the solution and a condition estimate are also\n\
  *  provided.\n\
  *\n\
  *  Description\n\
  *  ===========\n\
  *\n\
  *  The following steps are performed:\n\
  *\n\
  *  1. If FACT = 'E', real scaling factors are computed to equilibrate\n\
  *     the system:\n\
  *        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B\n\
  *     Whether or not the system will be equilibrated depends on the\n\
  *     scaling of the matrix A, but if equilibration is used, A is\n\
  *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.\n\
  *\n\
  *  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to\n\
  *     factor the matrix A (after equilibration if FACT = 'E') as\n\
  *        A = U**H* U,  if UPLO = 'U', or\n\
  *        A = L * L**H,  if UPLO = 'L',\n\
  *     where U is an upper triangular matrix and L is a lower triangular\n\
  *     matrix.\n\
  *\n\
  *  3. If the leading i-by-i principal minor is not positive definite,\n\
  *     then the routine returns with INFO = i. Otherwise, the factored\n\
  *     form of A is used to estimate the condition number of the matrix\n\
  *     A.  If the reciprocal of the condition number is less than machine\n\
  *     precision, INFO = N+1 is returned as a warning, but the routine\n\
  *     still goes on to solve for X and compute error bounds as\n\
  *     described below.\n\
  *\n\
  *  4. The system of equations is solved for X using the factored form\n\
  *     of A.\n\
  *\n\
  *  5. Iterative refinement is applied to improve the computed solution\n\
  *     matrix and calculate error bounds and backward error estimates\n\
  *     for it.\n\
  *\n\
  *  6. If equilibration was used, the matrix X is premultiplied by\n\
  *     diag(S) so that it solves the original system before\n\
  *     equilibration.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  FACT    (input) CHARACTER*1\n\
  *          Specifies whether or not the factored form of the matrix A is\n\
  *          supplied on entry, and if not, whether the matrix A should be\n\
  *          equilibrated before it is factored.\n\
  *          = 'F':  On entry, AF contains the factored form of A.\n\
  *                  If EQUED = 'Y', the matrix A has been equilibrated\n\
  *                  with scaling factors given by S.  A and AF will not\n\
  *                  be modified.\n\
  *          = 'N':  The matrix A will be copied to AF and factored.\n\
  *          = 'E':  The matrix A will be equilibrated if necessary, then\n\
  *                  copied to AF and factored.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangle of A is stored;\n\
  *          = 'L':  Lower triangle of A is stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of linear equations, i.e., the order of the\n\
  *          matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrices B and X.  NRHS >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
  *          On entry, the Hermitian matrix A, except if FACT = 'F' and\n\
  *          EQUED = 'Y', then A must contain the equilibrated matrix\n\
  *          diag(S)*A*diag(S).  If UPLO = 'U', the leading\n\
  *          N-by-N upper triangular part of A contains the upper\n\
  *          triangular part of the matrix A, and the strictly lower\n\
  *          triangular part of A is not referenced.  If UPLO = 'L', the\n\
  *          leading N-by-N lower triangular part of A contains the lower\n\
  *          triangular part of the matrix A, and the strictly upper\n\
  *          triangular part of A is not referenced.  A is not modified if\n\
  *          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.\n\
  *\n\
  *          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by\n\
  *          diag(S)*A*diag(S).\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)\n\
  *          If FACT = 'F', then AF is an input argument and on entry\n\
  *          contains the triangular factor U or L from the Cholesky\n\
  *          factorization A = U**H*U or A = L*L**H, in the same storage\n\
  *          format as A.  If EQUED .ne. 'N', then AF is the factored form\n\
  *          of the equilibrated matrix diag(S)*A*diag(S).\n\
  *\n\
  *          If FACT = 'N', then AF is an output argument and on exit\n\
  *          returns the triangular factor U or L from the Cholesky\n\
  *          factorization A = U**H*U or A = L*L**H of the original\n\
  *          matrix A.\n\
  *\n\
  *          If FACT = 'E', then AF is an output argument and on exit\n\
  *          returns the triangular factor U or L from the Cholesky\n\
  *          factorization A = U**H*U or A = L*L**H of the equilibrated\n\
  *          matrix A (see the description of A for the form of the\n\
  *          equilibrated matrix).\n\
  *\n\
  *  LDAF    (input) INTEGER\n\
  *          The leading dimension of the array AF.  LDAF >= max(1,N).\n\
  *\n\
  *  EQUED   (input or output) CHARACTER*1\n\
  *          Specifies the form of equilibration that was done.\n\
  *          = 'N':  No equilibration (always true if FACT = 'N').\n\
  *          = 'Y':  Equilibration was done, i.e., A has been replaced by\n\
  *                  diag(S) * A * diag(S).\n\
  *          EQUED is an input argument if FACT = 'F'; otherwise, it is an\n\
  *          output argument.\n\
  *\n\
  *  S       (input or output) DOUBLE PRECISION array, dimension (N)\n\
  *          The scale factors for A; not accessed if EQUED = 'N'.  S is\n\
  *          an input argument if FACT = 'F'; otherwise, S is an output\n\
  *          argument.  If FACT = 'F' and EQUED = 'Y', each element of S\n\
  *          must be positive.\n\
  *\n\
  *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n\
  *          On entry, the N-by-NRHS righthand side matrix B.\n\
  *          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',\n\
  *          B is overwritten by diag(S) * B.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)\n\
  *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to\n\
  *          the original system of equations.  Note that if EQUED = 'Y',\n\
  *          A and B are modified on exit, and the solution to the\n\
  *          equilibrated system is inv(diag(S))*X.\n\
  *\n\
  *  LDX     (input) INTEGER\n\
  *          The leading dimension of the array X.  LDX >= max(1,N).\n\
  *\n\
  *  RCOND   (output) DOUBLE PRECISION\n\
  *          The estimate of the reciprocal condition number of the matrix\n\
  *          A after equilibration (if done).  If RCOND is less than the\n\
  *          machine precision (in particular, if RCOND = 0), the matrix\n\
  *          is singular to working precision.  This condition is\n\
  *          indicated by a return code of INFO > 0.\n\
  *\n\
  *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n\
  *          The estimated forward error bound for each solution vector\n\
  *          X(j) (the j-th column of the solution matrix X).\n\
  *          If XTRUE is the true solution corresponding to X(j), FERR(j)\n\
  *          is an estimated upper bound for the magnitude of the largest\n\
  *          element in (X(j) - XTRUE) divided by the magnitude of the\n\
  *          largest element in X(j).  The estimate is as reliable as\n\
  *          the estimate for RCOND, and is almost always a slight\n\
  *          overestimate of the true error.\n\
  *\n\
  *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)\n\
  *          The componentwise relative backward error of each solution\n\
  *          vector X(j) (i.e., the smallest relative change in\n\
  *          any element of A or B that makes X(j) an exact solution).\n\
  *\n\
  *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)\n\
  *\n\
  *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0: if INFO = i, and i is\n\
  *                <= N:  the leading minor of order i of A is\n\
  *                       not positive definite, so the factorization\n\
  *                       could not be completed, and the solution has not\n\
  *                       been computed. RCOND = 0 is returned.\n\
  *                = N+1: U is nonsingular, but RCOND is less than machine\n\
  *                       precision, meaning that the matrix is singular\n\
  *                       to working precision.  Nevertheless, the\n\
  *                       solution and error bounds are computed because\n\
  *                       there are a number of situations where the\n\
  *                       computed solution can be more accurate than the\n\
  *                       value of RCOND would suggest.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"
 |