File: zsptri

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (77 lines) | stat: -rw-r--r-- 2,523 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
--- 
:name: zsptri
:md5sum: 67e0485ac6f1e73b1946a7a103fd21e5
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: doublecomplex
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- ipiv: 
    :type: integer
    :intent: input
    :dims: 
    - n
- work: 
    :type: doublecomplex
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE ZSPTRI( UPLO, N, AP, IPIV, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZSPTRI computes the inverse of a complex symmetric indefinite matrix\n\
  *  A in packed storage using the factorization A = U*D*U**T or\n\
  *  A = L*D*L**T computed by ZSPTRF.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          Specifies whether the details of the factorization are stored\n\
  *          as an upper or lower triangular matrix.\n\
  *          = 'U':  Upper triangular, form is A = U*D*U**T;\n\
  *          = 'L':  Lower triangular, form is A = L*D*L**T.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n\
  *          On entry, the block diagonal matrix D and the multipliers\n\
  *          used to obtain the factor U or L as computed by ZSPTRF,\n\
  *          stored as a packed triangular matrix.\n\
  *\n\
  *          On exit, if INFO = 0, the (symmetric) inverse of the original\n\
  *          matrix, stored as a packed triangular matrix. The j-th column\n\
  *          of inv(A) is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L',\n\
  *             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.\n\
  *\n\
  *  IPIV    (input) INTEGER array, dimension (N)\n\
  *          Details of the interchanges and the block structure of D\n\
  *          as determined by ZSPTRF.\n\
  *\n\
  *  WORK    (workspace) COMPLEX*16 array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its\n\
  *               inverse could not be computed.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"