1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
---
:name: zsytrf
:md5sum: 9c93e85cbf5380c2c19fa9764c96cc12
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- ipiv:
:type: integer
:intent: output
:dims:
- n
- work:
:type: doublecomplex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZSYTRF computes the factorization of a complex symmetric matrix A\n\
* using the Bunch-Kaufman diagonal pivoting method. The form of the\n\
* factorization is\n\
*\n\
* A = U*D*U**T or A = L*D*L**T\n\
*\n\
* where U (or L) is a product of permutation and unit upper (lower)\n\
* triangular matrices, and D is symmetric and block diagonal with\n\
* with 1-by-1 and 2-by-2 diagonal blocks.\n\
*\n\
* This is the blocked version of the algorithm, calling Level 3 BLAS.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
* On entry, the symmetric matrix A. If UPLO = 'U', the leading\n\
* N-by-N upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading N-by-N lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
*\n\
* On exit, the block diagonal matrix D and the multipliers used\n\
* to obtain the factor U or L (see below for further details).\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* IPIV (output) INTEGER array, dimension (N)\n\
* Details of the interchanges and the block structure of D.\n\
* If IPIV(k) > 0, then rows and columns k and IPIV(k) were\n\
* interchanged and D(k,k) is a 1-by-1 diagonal block.\n\
* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and\n\
* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)\n\
* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =\n\
* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were\n\
* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.\n\
*\n\
* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The length of WORK. LWORK >=1. For best performance\n\
* LWORK >= N*NB, where NB is the block size returned by ILAENV.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, D(i,i) is exactly zero. The factorization\n\
* has been completed, but the block diagonal matrix D is\n\
* exactly singular, and division by zero will occur if it\n\
* is used to solve a system of equations.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* If UPLO = 'U', then A = U*D*U', where\n\
* U = P(n)*U(n)* ... *P(k)U(k)* ...,\n\
* i.e., U is a product of terms P(k)*U(k), where k decreases from n to\n\
* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as\n\
* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such\n\
* that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
*\n\
* ( I v 0 ) k-s\n\
* U(k) = ( 0 I 0 ) s\n\
* ( 0 0 I ) n-k\n\
* k-s s n-k\n\
*\n\
* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).\n\
* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),\n\
* and A(k,k), and v overwrites A(1:k-2,k-1:k).\n\
*\n\
* If UPLO = 'L', then A = L*D*L', where\n\
* L = P(1)*L(1)* ... *P(k)*L(k)* ...,\n\
* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to\n\
* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as\n\
* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such\n\
* that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
*\n\
* ( I 0 0 ) k-1\n\
* L(k) = ( 0 I 0 ) s\n\
* ( 0 v I ) n-k-s+1\n\
* k-1 s n-k-s+1\n\
*\n\
* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).\n\
* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),\n\
* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).\n\
*\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL LQUERY, UPPER\n INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n INTEGER ILAENV\n EXTERNAL LSAME, ILAENV\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL XERBLA, ZLASYF, ZSYTF2\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX\n\
* ..\n"
|