1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#include "rb_lapack.h"
extern VOID cgbbrd_(char* vect, integer* m, integer* n, integer* ncc, integer* kl, integer* ku, complex* ab, integer* ldab, real* d, real* e, complex* q, integer* ldq, complex* pt, integer* ldpt, complex* c, integer* ldc, complex* work, real* rwork, integer* info);
static VALUE
rblapack_cgbbrd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_vect;
char vect;
VALUE rblapack_kl;
integer kl;
VALUE rblapack_ku;
integer ku;
VALUE rblapack_ab;
complex *ab;
VALUE rblapack_c;
complex *c;
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
real *e;
VALUE rblapack_q;
complex *q;
VALUE rblapack_pt;
complex *pt;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
complex *ab_out__;
VALUE rblapack_c_out__;
complex *c_out__;
complex *work;
real *rwork;
integer ldab;
integer n;
integer ldc;
integer ncc;
integer ldq;
integer m;
integer ldpt;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n d, e, q, pt, info, ab, c = NumRu::Lapack.cgbbrd( vect, kl, ku, ab, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CGBBRD reduces a complex general m-by-n band matrix A to real upper\n* bidiagonal form B by a unitary transformation: Q' * A * P = B.\n*\n* The routine computes B, and optionally forms Q or P', or computes\n* Q'*C for a given matrix C.\n*\n\n* Arguments\n* =========\n*\n* VECT (input) CHARACTER*1\n* Specifies whether or not the matrices Q and P' are to be\n* formed.\n* = 'N': do not form Q or P';\n* = 'Q': form Q only;\n* = 'P': form P' only;\n* = 'B': form both.\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* NCC (input) INTEGER\n* The number of columns of the matrix C. NCC >= 0.\n*\n* KL (input) INTEGER\n* The number of subdiagonals of the matrix A. KL >= 0.\n*\n* KU (input) INTEGER\n* The number of superdiagonals of the matrix A. KU >= 0.\n*\n* AB (input/output) COMPLEX array, dimension (LDAB,N)\n* On entry, the m-by-n band matrix A, stored in rows 1 to\n* KL+KU+1. The j-th column of A is stored in the j-th column of\n* the array AB as follows:\n* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).\n* On exit, A is overwritten by values generated during the\n* reduction.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array A. LDAB >= KL+KU+1.\n*\n* D (output) REAL array, dimension (min(M,N))\n* The diagonal elements of the bidiagonal matrix B.\n*\n* E (output) REAL array, dimension (min(M,N)-1)\n* The superdiagonal elements of the bidiagonal matrix B.\n*\n* Q (output) COMPLEX array, dimension (LDQ,M)\n* If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.\n* If VECT = 'N' or 'P', the array Q is not referenced.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q.\n* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.\n*\n* PT (output) COMPLEX array, dimension (LDPT,N)\n* If VECT = 'P' or 'B', the n-by-n unitary matrix P'.\n* If VECT = 'N' or 'Q', the array PT is not referenced.\n*\n* LDPT (input) INTEGER\n* The leading dimension of the array PT.\n* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.\n*\n* C (input/output) COMPLEX array, dimension (LDC,NCC)\n* On entry, an m-by-ncc matrix C.\n* On exit, C is overwritten by Q'*C.\n* C is not referenced if NCC = 0.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C.\n* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.\n*\n* WORK (workspace) COMPLEX array, dimension (max(M,N))\n*\n* RWORK (workspace) REAL array, dimension (max(M,N))\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n d, e, q, pt, info, ab, c = NumRu::Lapack.cgbbrd( vect, kl, ku, ab, c, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_vect = argv[0];
rblapack_kl = argv[1];
rblapack_ku = argv[2];
rblapack_ab = argv[3];
rblapack_c = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
vect = StringValueCStr(rblapack_vect)[0];
ku = NUM2INT(rblapack_ku);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (5th argument) must be NArray");
if (NA_RANK(rblapack_c) != 2)
rb_raise(rb_eArgError, "rank of c (5th argument) must be %d", 2);
ldc = NA_SHAPE0(rblapack_c);
ncc = NA_SHAPE1(rblapack_c);
if (NA_TYPE(rblapack_c) != NA_SCOMPLEX)
rblapack_c = na_change_type(rblapack_c, NA_SCOMPLEX);
c = NA_PTR_TYPE(rblapack_c, complex*);
kl = NUM2INT(rblapack_kl);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, complex*);
ldpt = ((lsame_(&vect,"P")) || (lsame_(&vect,"B"))) ? MAX(1,n) : 1;
m = ldab;
ldq = ((lsame_(&vect,"Q")) || (lsame_(&vect,"B"))) ? MAX(1,m) : 1;
{
na_shape_t shape[1];
shape[0] = MIN(m,n);
rblapack_d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
d = NA_PTR_TYPE(rblapack_d, real*);
{
na_shape_t shape[1];
shape[0] = MIN(m,n)-1;
rblapack_e = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
e = NA_PTR_TYPE(rblapack_e, real*);
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = m;
rblapack_q = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
q = NA_PTR_TYPE(rblapack_q, complex*);
{
na_shape_t shape[2];
shape[0] = ldpt;
shape[1] = n;
rblapack_pt = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
pt = NA_PTR_TYPE(rblapack_pt, complex*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, complex*);
MEMCPY(ab_out__, ab, complex, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = ncc;
rblapack_c_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
c_out__ = NA_PTR_TYPE(rblapack_c_out__, complex*);
MEMCPY(c_out__, c, complex, NA_TOTAL(rblapack_c));
rblapack_c = rblapack_c_out__;
c = c_out__;
work = ALLOC_N(complex, (MAX(m,n)));
rwork = ALLOC_N(real, (MAX(m,n)));
cgbbrd_(&vect, &m, &n, &ncc, &kl, &ku, ab, &ldab, d, e, q, &ldq, pt, &ldpt, c, &ldc, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(7, rblapack_d, rblapack_e, rblapack_q, rblapack_pt, rblapack_info, rblapack_ab, rblapack_c);
}
void
init_lapack_cgbbrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgbbrd", rblapack_cgbbrd, -1);
}
|