File: cgbbrd.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (157 lines) | stat: -rw-r--r-- 8,045 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include "rb_lapack.h"

extern VOID cgbbrd_(char* vect, integer* m, integer* n, integer* ncc, integer* kl, integer* ku, complex* ab, integer* ldab, real* d, real* e, complex* q, integer* ldq, complex* pt, integer* ldpt, complex* c, integer* ldc, complex* work, real* rwork, integer* info);


static VALUE
rblapack_cgbbrd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_vect;
  char vect; 
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ab;
  complex *ab; 
  VALUE rblapack_c;
  complex *c; 
  VALUE rblapack_d;
  real *d; 
  VALUE rblapack_e;
  real *e; 
  VALUE rblapack_q;
  complex *q; 
  VALUE rblapack_pt;
  complex *pt; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  complex *ab_out__;
  VALUE rblapack_c_out__;
  complex *c_out__;
  complex *work;
  real *rwork;

  integer ldab;
  integer n;
  integer ldc;
  integer ncc;
  integer ldq;
  integer m;
  integer ldpt;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, e, q, pt, info, ab, c = NumRu::Lapack.cgbbrd( vect, kl, ku, ab, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CGBBRD reduces a complex general m-by-n band matrix A to real upper\n*  bidiagonal form B by a unitary transformation: Q' * A * P = B.\n*\n*  The routine computes B, and optionally forms Q or P', or computes\n*  Q'*C for a given matrix C.\n*\n\n*  Arguments\n*  =========\n*\n*  VECT    (input) CHARACTER*1\n*          Specifies whether or not the matrices Q and P' are to be\n*          formed.\n*          = 'N': do not form Q or P';\n*          = 'Q': form Q only;\n*          = 'P': form P' only;\n*          = 'B': form both.\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix A.  M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix A.  N >= 0.\n*\n*  NCC     (input) INTEGER\n*          The number of columns of the matrix C.  NCC >= 0.\n*\n*  KL      (input) INTEGER\n*          The number of subdiagonals of the matrix A. KL >= 0.\n*\n*  KU      (input) INTEGER\n*          The number of superdiagonals of the matrix A. KU >= 0.\n*\n*  AB      (input/output) COMPLEX array, dimension (LDAB,N)\n*          On entry, the m-by-n band matrix A, stored in rows 1 to\n*          KL+KU+1. The j-th column of A is stored in the j-th column of\n*          the array AB as follows:\n*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).\n*          On exit, A is overwritten by values generated during the\n*          reduction.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array A. LDAB >= KL+KU+1.\n*\n*  D       (output) REAL array, dimension (min(M,N))\n*          The diagonal elements of the bidiagonal matrix B.\n*\n*  E       (output) REAL array, dimension (min(M,N)-1)\n*          The superdiagonal elements of the bidiagonal matrix B.\n*\n*  Q       (output) COMPLEX array, dimension (LDQ,M)\n*          If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.\n*          If VECT = 'N' or 'P', the array Q is not referenced.\n*\n*  LDQ     (input) INTEGER\n*          The leading dimension of the array Q.\n*          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.\n*\n*  PT      (output) COMPLEX array, dimension (LDPT,N)\n*          If VECT = 'P' or 'B', the n-by-n unitary matrix P'.\n*          If VECT = 'N' or 'Q', the array PT is not referenced.\n*\n*  LDPT    (input) INTEGER\n*          The leading dimension of the array PT.\n*          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.\n*\n*  C       (input/output) COMPLEX array, dimension (LDC,NCC)\n*          On entry, an m-by-ncc matrix C.\n*          On exit, C is overwritten by Q'*C.\n*          C is not referenced if NCC = 0.\n*\n*  LDC     (input) INTEGER\n*          The leading dimension of the array C.\n*          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.\n*\n*  WORK    (workspace) COMPLEX array, dimension (max(M,N))\n*\n*  RWORK   (workspace) REAL array, dimension (max(M,N))\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  d, e, q, pt, info, ab, c = NumRu::Lapack.cgbbrd( vect, kl, ku, ab, c, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_vect = argv[0];
  rblapack_kl = argv[1];
  rblapack_ku = argv[2];
  rblapack_ab = argv[3];
  rblapack_c = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  vect = StringValueCStr(rblapack_vect)[0];
  ku = NUM2INT(rblapack_ku);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (5th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 2)
    rb_raise(rb_eArgError, "rank of c (5th argument) must be %d", 2);
  ldc = NA_SHAPE0(rblapack_c);
  ncc = NA_SHAPE1(rblapack_c);
  if (NA_TYPE(rblapack_c) != NA_SCOMPLEX)
    rblapack_c = na_change_type(rblapack_c, NA_SCOMPLEX);
  c = NA_PTR_TYPE(rblapack_c, complex*);
  kl = NUM2INT(rblapack_kl);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, complex*);
  ldpt = ((lsame_(&vect,"P")) || (lsame_(&vect,"B"))) ? MAX(1,n) : 1;
  m = ldab;
  ldq = ((lsame_(&vect,"Q")) || (lsame_(&vect,"B"))) ? MAX(1,m) : 1;
  {
    na_shape_t shape[1];
    shape[0] = MIN(m,n);
    rblapack_d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  d = NA_PTR_TYPE(rblapack_d, real*);
  {
    na_shape_t shape[1];
    shape[0] = MIN(m,n)-1;
    rblapack_e = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  e = NA_PTR_TYPE(rblapack_e, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldq;
    shape[1] = m;
    rblapack_q = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  q = NA_PTR_TYPE(rblapack_q, complex*);
  {
    na_shape_t shape[2];
    shape[0] = ldpt;
    shape[1] = n;
    rblapack_pt = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  pt = NA_PTR_TYPE(rblapack_pt, complex*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, complex*);
  MEMCPY(ab_out__, ab, complex, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldc;
    shape[1] = ncc;
    rblapack_c_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  c_out__ = NA_PTR_TYPE(rblapack_c_out__, complex*);
  MEMCPY(c_out__, c, complex, NA_TOTAL(rblapack_c));
  rblapack_c = rblapack_c_out__;
  c = c_out__;
  work = ALLOC_N(complex, (MAX(m,n)));
  rwork = ALLOC_N(real, (MAX(m,n)));

  cgbbrd_(&vect, &m, &n, &ncc, &kl, &ku, ab, &ldab, d, e, q, &ldq, pt, &ldpt, c, &ldc, work, rwork, &info);

  free(work);
  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_d, rblapack_e, rblapack_q, rblapack_pt, rblapack_info, rblapack_ab, rblapack_c);
}

void
init_lapack_cgbbrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cgbbrd", rblapack_cgbbrd, -1);
}