1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
#include "rb_lapack.h"
extern VOID cgbtrf_(integer* m, integer* n, integer* kl, integer* ku, complex* ab, integer* ldab, integer* ipiv, integer* info);
static VALUE
rblapack_cgbtrf(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_kl;
integer kl;
VALUE rblapack_ku;
integer ku;
VALUE rblapack_ab;
complex *ab;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
complex *ab_out__;
integer ldab;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ipiv, info, ab = NumRu::Lapack.cgbtrf( m, kl, ku, ab, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )\n\n* Purpose\n* =======\n*\n* CGBTRF computes an LU factorization of a complex m-by-n band matrix A\n* using partial pivoting with row interchanges.\n*\n* This is the blocked version of the algorithm, calling Level 3 BLAS.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* KL (input) INTEGER\n* The number of subdiagonals within the band of A. KL >= 0.\n*\n* KU (input) INTEGER\n* The number of superdiagonals within the band of A. KU >= 0.\n*\n* AB (input/output) COMPLEX array, dimension (LDAB,N)\n* On entry, the matrix A in band storage, in rows KL+1 to\n* 2*KL+KU+1; rows 1 to KL of the array need not be set.\n* The j-th column of A is stored in the j-th column of the\n* array AB as follows:\n* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)\n*\n* On exit, details of the factorization: U is stored as an\n* upper triangular band matrix with KL+KU superdiagonals in\n* rows 1 to KL+KU+1, and the multipliers used during the\n* factorization are stored in rows KL+KU+2 to 2*KL+KU+1.\n* See below for further details.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.\n*\n* IPIV (output) INTEGER array, dimension (min(M,N))\n* The pivot indices; for 1 <= i <= min(M,N), row i of the\n* matrix was interchanged with row IPIV(i).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization\n* has been completed, but the factor U is exactly\n* singular, and division by zero will occur if it is used\n* to solve a system of equations.\n*\n\n* Further Details\n* ===============\n*\n* The band storage scheme is illustrated by the following example, when\n* M = N = 6, KL = 2, KU = 1:\n*\n* On entry: On exit:\n*\n* * * * + + + * * * u14 u25 u36\n* * * + + + + * * u13 u24 u35 u46\n* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56\n* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66\n* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *\n* a31 a42 a53 a64 * * m31 m42 m53 m64 * *\n*\n* Array elements marked * are not used by the routine; elements marked\n* + need not be set on entry, but are required by the routine to store\n* elements of U because of fill-in resulting from the row interchanges.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ipiv, info, ab = NumRu::Lapack.cgbtrf( m, kl, ku, ab, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_m = argv[0];
rblapack_kl = argv[1];
rblapack_ku = argv[2];
rblapack_ab = argv[3];
if (argc == 4) {
} else if (rblapack_options != Qnil) {
} else {
}
m = NUM2INT(rblapack_m);
ku = NUM2INT(rblapack_ku);
kl = NUM2INT(rblapack_kl);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, complex*);
{
na_shape_t shape[1];
shape[0] = MIN(m,n);
rblapack_ipiv = na_make_object(NA_LINT, 1, shape, cNArray);
}
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, complex*);
MEMCPY(ab_out__, ab, complex, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
cgbtrf_(&m, &n, &kl, &ku, ab, &ldab, ipiv, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_ipiv, rblapack_info, rblapack_ab);
}
void
init_lapack_cgbtrf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgbtrf", rblapack_cgbtrf, -1);
}
|