1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
#include "rb_lapack.h"
extern VOID cgeqpf_(integer* m, integer* n, complex* a, integer* lda, integer* jpvt, complex* tau, complex* work, real* rwork, integer* info);
static VALUE
rblapack_cgeqpf(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_a;
complex *a;
VALUE rblapack_jpvt;
integer *jpvt;
VALUE rblapack_tau;
complex *tau;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
VALUE rblapack_jpvt_out__;
integer *jpvt_out__;
complex *work;
real *rwork;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n tau, info, a, jpvt = NumRu::Lapack.cgeqpf( m, a, jpvt, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* This routine is deprecated and has been replaced by routine CGEQP3.\n*\n* CGEQPF computes a QR factorization with column pivoting of a\n* complex M-by-N matrix A: A*P = Q*R.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0\n*\n* A (input/output) COMPLEX array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, the upper triangle of the array contains the\n* min(M,N)-by-N upper triangular matrix R; the elements\n* below the diagonal, together with the array TAU,\n* represent the unitary matrix Q as a product of\n* min(m,n) elementary reflectors.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* JPVT (input/output) INTEGER array, dimension (N)\n* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted\n* to the front of A*P (a leading column); if JPVT(i) = 0,\n* the i-th column of A is a free column.\n* On exit, if JPVT(i) = k, then the i-th column of A*P\n* was the k-th column of A.\n*\n* TAU (output) COMPLEX array, dimension (min(M,N))\n* The scalar factors of the elementary reflectors.\n*\n* WORK (workspace) COMPLEX array, dimension (N)\n*\n* RWORK (workspace) REAL array, dimension (2*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of elementary reflectors\n*\n* Q = H(1) H(2) . . . H(n)\n*\n* Each H(i) has the form\n*\n* H = I - tau * v * v'\n*\n* where tau is a complex scalar, and v is a complex vector with\n* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).\n*\n* The matrix P is represented in jpvt as follows: If\n* jpvt(j) = i\n* then the jth column of P is the ith canonical unit vector.\n*\n* Partial column norm updating strategy modified by\n* Z. Drmac and Z. Bujanovic, Dept. of Mathematics,\n* University of Zagreb, Croatia.\n* June 2010\n* For more details see LAPACK Working Note 176.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n tau, info, a, jpvt = NumRu::Lapack.cgeqpf( m, a, jpvt, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_m = argv[0];
rblapack_a = argv[1];
rblapack_jpvt = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_jpvt))
rb_raise(rb_eArgError, "jpvt (3th argument) must be NArray");
if (NA_RANK(rblapack_jpvt) != 1)
rb_raise(rb_eArgError, "rank of jpvt (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_jpvt);
if (NA_TYPE(rblapack_jpvt) != NA_LINT)
rblapack_jpvt = na_change_type(rblapack_jpvt, NA_LINT);
jpvt = NA_PTR_TYPE(rblapack_jpvt, integer*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of jpvt");
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
{
na_shape_t shape[1];
shape[0] = MIN(m,n);
rblapack_tau = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
tau = NA_PTR_TYPE(rblapack_tau, complex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_jpvt_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
}
jpvt_out__ = NA_PTR_TYPE(rblapack_jpvt_out__, integer*);
MEMCPY(jpvt_out__, jpvt, integer, NA_TOTAL(rblapack_jpvt));
rblapack_jpvt = rblapack_jpvt_out__;
jpvt = jpvt_out__;
work = ALLOC_N(complex, (n));
rwork = ALLOC_N(real, (2*n));
cgeqpf_(&m, &n, a, &lda, jpvt, tau, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_tau, rblapack_info, rblapack_a, rblapack_jpvt);
}
void
init_lapack_cgeqpf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgeqpf", rblapack_cgeqpf, -1);
}
|