1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
#include "rb_lapack.h"
extern VOID cgesvd_(char* jobu, char* jobvt, integer* m, integer* n, complex* a, integer* lda, real* s, complex* u, integer* ldu, complex* vt, integer* ldvt, complex* work, integer* lwork, real* rwork, integer* info);
static VALUE
rblapack_cgesvd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobu;
char jobu;
VALUE rblapack_jobvt;
char jobvt;
VALUE rblapack_a;
complex *a;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_s;
real *s;
VALUE rblapack_u;
complex *u;
VALUE rblapack_vt;
complex *vt;
VALUE rblapack_work;
complex *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
real *rwork;
integer lda;
integer n;
integer ldu;
integer ldvt;
integer m;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n s, u, vt, work, info, a = NumRu::Lapack.cgesvd( jobu, jobvt, a, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CGESVD computes the singular value decomposition (SVD) of a complex\n* M-by-N matrix A, optionally computing the left and/or right singular\n* vectors. The SVD is written\n*\n* A = U * SIGMA * conjugate-transpose(V)\n*\n* where SIGMA is an M-by-N matrix which is zero except for its\n* min(m,n) diagonal elements, U is an M-by-M unitary matrix, and\n* V is an N-by-N unitary matrix. The diagonal elements of SIGMA\n* are the singular values of A; they are real and non-negative, and\n* are returned in descending order. The first min(m,n) columns of\n* U and V are the left and right singular vectors of A.\n*\n* Note that the routine returns V**H, not V.\n*\n\n* Arguments\n* =========\n*\n* JOBU (input) CHARACTER*1\n* Specifies options for computing all or part of the matrix U:\n* = 'A': all M columns of U are returned in array U:\n* = 'S': the first min(m,n) columns of U (the left singular\n* vectors) are returned in the array U;\n* = 'O': the first min(m,n) columns of U (the left singular\n* vectors) are overwritten on the array A;\n* = 'N': no columns of U (no left singular vectors) are\n* computed.\n*\n* JOBVT (input) CHARACTER*1\n* Specifies options for computing all or part of the matrix\n* V**H:\n* = 'A': all N rows of V**H are returned in the array VT;\n* = 'S': the first min(m,n) rows of V**H (the right singular\n* vectors) are returned in the array VT;\n* = 'O': the first min(m,n) rows of V**H (the right singular\n* vectors) are overwritten on the array A;\n* = 'N': no rows of V**H (no right singular vectors) are\n* computed.\n*\n* JOBVT and JOBU cannot both be 'O'.\n*\n* M (input) INTEGER\n* The number of rows of the input matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the input matrix A. N >= 0.\n*\n* A (input/output) COMPLEX array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit,\n* if JOBU = 'O', A is overwritten with the first min(m,n)\n* columns of U (the left singular vectors,\n* stored columnwise);\n* if JOBVT = 'O', A is overwritten with the first min(m,n)\n* rows of V**H (the right singular vectors,\n* stored rowwise);\n* if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A\n* are destroyed.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* S (output) REAL array, dimension (min(M,N))\n* The singular values of A, sorted so that S(i) >= S(i+1).\n*\n* U (output) COMPLEX array, dimension (LDU,UCOL)\n* (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.\n* If JOBU = 'A', U contains the M-by-M unitary matrix U;\n* if JOBU = 'S', U contains the first min(m,n) columns of U\n* (the left singular vectors, stored columnwise);\n* if JOBU = 'N' or 'O', U is not referenced.\n*\n* LDU (input) INTEGER\n* The leading dimension of the array U. LDU >= 1; if\n* JOBU = 'S' or 'A', LDU >= M.\n*\n* VT (output) COMPLEX array, dimension (LDVT,N)\n* If JOBVT = 'A', VT contains the N-by-N unitary matrix\n* V**H;\n* if JOBVT = 'S', VT contains the first min(m,n) rows of\n* V**H (the right singular vectors, stored rowwise);\n* if JOBVT = 'N' or 'O', VT is not referenced.\n*\n* LDVT (input) INTEGER\n* The leading dimension of the array VT. LDVT >= 1; if\n* JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).\n*\n* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* LWORK >= MAX(1,2*MIN(M,N)+MAX(M,N)).\n* For good performance, LWORK should generally be larger.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* RWORK (workspace) REAL array, dimension (5*min(M,N))\n* On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the\n* unconverged superdiagonal elements of an upper bidiagonal\n* matrix B whose diagonal is in S (not necessarily sorted).\n* B satisfies A = U * B * VT, so it has the same singular\n* values as A, and singular vectors related by U and VT.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if CBDSQR did not converge, INFO specifies how many\n* superdiagonals of an intermediate bidiagonal form B\n* did not converge to zero. See the description of RWORK\n* above for details.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n s, u, vt, work, info, a = NumRu::Lapack.cgesvd( jobu, jobvt, a, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_jobu = argv[0];
rblapack_jobvt = argv[1];
rblapack_a = argv[2];
if (argc == 4) {
rblapack_lwork = argv[3];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
jobu = StringValueCStr(rblapack_jobu)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
m = lda;
ldu = ((lsame_(&jobu,"S")) || (lsame_(&jobu,"A"))) ? m : 1;
jobvt = StringValueCStr(rblapack_jobvt)[0];
ldvt = lsame_(&jobvt,"A") ? n : lsame_(&jobvt,"S") ? MIN(m,n) : 1;
if (rblapack_lwork == Qnil)
lwork = MAX(1, 2*MIN(m,n)+MAX(m,n));
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = MIN(m,n);
rblapack_s = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
s = NA_PTR_TYPE(rblapack_s, real*);
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = lsame_(&jobu,"A") ? m : lsame_(&jobu,"S") ? MIN(m,n) : 0;
rblapack_u = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
u = NA_PTR_TYPE(rblapack_u, complex*);
{
na_shape_t shape[2];
shape[0] = ldvt;
shape[1] = n;
rblapack_vt = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
vt = NA_PTR_TYPE(rblapack_vt, complex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, complex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = MAX(n, MIN(m,n));
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
{
VALUE __shape__[3];
__shape__[0] = Qtrue;
__shape__[1] = n < MIN(m,n) ? rb_range_new(rblapack_ZERO, INT2NUM(n), Qtrue) : Qtrue;
__shape__[2] = rblapack_a;
na_aset(3, __shape__, rblapack_a_out__);
}
rblapack_a = rblapack_a_out__;
a = a_out__;
rwork = ALLOC_N(real, (5*MIN(m,n)));
cgesvd_(&jobu, &jobvt, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work, &lwork, rwork, &info);
free(rwork);
rblapack_info = INT2NUM(info);
{
VALUE __shape__[2];
__shape__[0] = Qtrue;
__shape__[1] = n < MIN(m,n) ? Qtrue : rb_range_new(rblapack_ZERO, INT2NUM(MIN(m,n)), Qtrue);
rblapack_a = na_aref(2, __shape__, rblapack_a);
}
return rb_ary_new3(6, rblapack_s, rblapack_u, rblapack_vt, rblapack_work, rblapack_info, rblapack_a);
}
void
init_lapack_cgesvd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgesvd", rblapack_cgesvd, -1);
}
|