File: cggglm.c

package info (click to toggle)
ruby-lapack 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 28,572 kB
  • sloc: ansic: 191,612; ruby: 3,937; makefile: 6
file content (156 lines) | stat: -rw-r--r-- 8,836 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include "rb_lapack.h"

extern VOID cggglm_(integer* n, integer* m, integer* p, complex* a, integer* lda, complex* b, integer* ldb, complex* d, complex* x, complex* y, complex* work, integer* lwork, integer* info);


static VALUE
rblapack_cggglm(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  complex *a; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_d;
  complex *d; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_x;
  complex *x; 
  VALUE rblapack_y;
  complex *y; 
  VALUE rblapack_work;
  complex *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  complex *a_out__;
  VALUE rblapack_b_out__;
  complex *b_out__;
  VALUE rblapack_d_out__;
  complex *d_out__;

  integer lda;
  integer m;
  integer ldb;
  integer p;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, y, work, info, a, b, d = NumRu::Lapack.cggglm( a, b, d, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  CGGGLM solves a general Gauss-Markov linear model (GLM) problem:\n*\n*          minimize || y ||_2   subject to   d = A*x + B*y\n*              x\n*\n*  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a\n*  given N-vector. It is assumed that M <= N <= M+P, and\n*\n*             rank(A) = M    and    rank( A B ) = N.\n*\n*  Under these assumptions, the constrained equation is always\n*  consistent, and there is a unique solution x and a minimal 2-norm\n*  solution y, which is obtained using a generalized QR factorization\n*  of the matrices (A, B) given by\n*\n*     A = Q*(R),   B = Q*T*Z.\n*           (0)\n*\n*  In particular, if matrix B is square nonsingular, then the problem\n*  GLM is equivalent to the following weighted linear least squares\n*  problem\n*\n*               minimize || inv(B)*(d-A*x) ||_2\n*                   x\n*\n*  where inv(B) denotes the inverse of B.\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The number of rows of the matrices A and B.  N >= 0.\n*\n*  M       (input) INTEGER\n*          The number of columns of the matrix A.  0 <= M <= N.\n*\n*  P       (input) INTEGER\n*          The number of columns of the matrix B.  P >= N-M.\n*\n*  A       (input/output) COMPLEX array, dimension (LDA,M)\n*          On entry, the N-by-M matrix A.\n*          On exit, the upper triangular part of the array A contains\n*          the M-by-M upper triangular matrix R.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A. LDA >= max(1,N).\n*\n*  B       (input/output) COMPLEX array, dimension (LDB,P)\n*          On entry, the N-by-P matrix B.\n*          On exit, if N <= P, the upper triangle of the subarray\n*          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;\n*          if N > P, the elements on and above the (N-P)th subdiagonal\n*          contain the N-by-P upper trapezoidal matrix T.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B. LDB >= max(1,N).\n*\n*  D       (input/output) COMPLEX array, dimension (N)\n*          On entry, D is the left hand side of the GLM equation.\n*          On exit, D is destroyed.\n*\n*  X       (output) COMPLEX array, dimension (M)\n*  Y       (output) COMPLEX array, dimension (P)\n*          On exit, X and Y are the solutions of the GLM problem.\n*\n*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK. LWORK >= max(1,N+M+P).\n*          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,\n*          where NB is an upper bound for the optimal blocksizes for\n*          CGEQRF, CGERQF, CUNMQR and CUNMRQ.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          = 1:  the upper triangular factor R associated with A in the\n*                generalized QR factorization of the pair (A, B) is\n*                singular, so that rank(A) < M; the least squares\n*                solution could not be computed.\n*          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal\n*                factor T associated with B in the generalized QR\n*                factorization of the pair (A, B) is singular, so that\n*                rank( A B ) < N; the least squares solution could not\n*                be computed.\n*\n\n*  ===================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, y, work, info, a, b, d = NumRu::Lapack.cggglm( a, b, d, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_a = argv[0];
  rblapack_b = argv[1];
  rblapack_d = argv[2];
  if (argc == 4) {
    rblapack_lwork = argv[3];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (1th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  m = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, complex*);
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (3th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_SCOMPLEX)
    rblapack_d = na_change_type(rblapack_d, NA_SCOMPLEX);
  d = NA_PTR_TYPE(rblapack_d, complex*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (2th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (2th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  p = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  if (rblapack_lwork == Qnil)
    lwork = m+n+p;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = m;
    rblapack_x = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  x = NA_PTR_TYPE(rblapack_x, complex*);
  {
    na_shape_t shape[1];
    shape[0] = p;
    rblapack_y = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  y = NA_PTR_TYPE(rblapack_y, complex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, complex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = m;
    rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
  MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = p;
    rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
  MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_d_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
  }
  d_out__ = NA_PTR_TYPE(rblapack_d_out__, complex*);
  MEMCPY(d_out__, d, complex, NA_TOTAL(rblapack_d));
  rblapack_d = rblapack_d_out__;
  d = d_out__;

  cggglm_(&n, &m, &p, a, &lda, b, &ldb, d, x, y, work, &lwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_x, rblapack_y, rblapack_work, rblapack_info, rblapack_a, rblapack_b, rblapack_d);
}

void
init_lapack_cggglm(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cggglm", rblapack_cggglm, -1);
}