1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#include "rb_lapack.h"
extern VOID cggglm_(integer* n, integer* m, integer* p, complex* a, integer* lda, complex* b, integer* ldb, complex* d, complex* x, complex* y, complex* work, integer* lwork, integer* info);
static VALUE
rblapack_cggglm(int argc, VALUE *argv, VALUE self){
VALUE rblapack_a;
complex *a;
VALUE rblapack_b;
complex *b;
VALUE rblapack_d;
complex *d;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_x;
complex *x;
VALUE rblapack_y;
complex *y;
VALUE rblapack_work;
complex *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
VALUE rblapack_b_out__;
complex *b_out__;
VALUE rblapack_d_out__;
complex *d_out__;
integer lda;
integer m;
integer ldb;
integer p;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n x, y, work, info, a, b, d = NumRu::Lapack.cggglm( a, b, d, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* CGGGLM solves a general Gauss-Markov linear model (GLM) problem:\n*\n* minimize || y ||_2 subject to d = A*x + B*y\n* x\n*\n* where A is an N-by-M matrix, B is an N-by-P matrix, and d is a\n* given N-vector. It is assumed that M <= N <= M+P, and\n*\n* rank(A) = M and rank( A B ) = N.\n*\n* Under these assumptions, the constrained equation is always\n* consistent, and there is a unique solution x and a minimal 2-norm\n* solution y, which is obtained using a generalized QR factorization\n* of the matrices (A, B) given by\n*\n* A = Q*(R), B = Q*T*Z.\n* (0)\n*\n* In particular, if matrix B is square nonsingular, then the problem\n* GLM is equivalent to the following weighted linear least squares\n* problem\n*\n* minimize || inv(B)*(d-A*x) ||_2\n* x\n*\n* where inv(B) denotes the inverse of B.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The number of rows of the matrices A and B. N >= 0.\n*\n* M (input) INTEGER\n* The number of columns of the matrix A. 0 <= M <= N.\n*\n* P (input) INTEGER\n* The number of columns of the matrix B. P >= N-M.\n*\n* A (input/output) COMPLEX array, dimension (LDA,M)\n* On entry, the N-by-M matrix A.\n* On exit, the upper triangular part of the array A contains\n* the M-by-M upper triangular matrix R.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* B (input/output) COMPLEX array, dimension (LDB,P)\n* On entry, the N-by-P matrix B.\n* On exit, if N <= P, the upper triangle of the subarray\n* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;\n* if N > P, the elements on and above the (N-P)th subdiagonal\n* contain the N-by-P upper trapezoidal matrix T.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* D (input/output) COMPLEX array, dimension (N)\n* On entry, D is the left hand side of the GLM equation.\n* On exit, D is destroyed.\n*\n* X (output) COMPLEX array, dimension (M)\n* Y (output) COMPLEX array, dimension (P)\n* On exit, X and Y are the solutions of the GLM problem.\n*\n* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,N+M+P).\n* For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,\n* where NB is an upper bound for the optimal blocksizes for\n* CGEQRF, CGERQF, CUNMQR and CUNMRQ.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* = 1: the upper triangular factor R associated with A in the\n* generalized QR factorization of the pair (A, B) is\n* singular, so that rank(A) < M; the least squares\n* solution could not be computed.\n* = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal\n* factor T associated with B in the generalized QR\n* factorization of the pair (A, B) is singular, so that\n* rank( A B ) < N; the least squares solution could not\n* be computed.\n*\n\n* ===================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n x, y, work, info, a, b, d = NumRu::Lapack.cggglm( a, b, d, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_a = argv[0];
rblapack_b = argv[1];
rblapack_d = argv[2];
if (argc == 4) {
rblapack_lwork = argv[3];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (1th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
m = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (3th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_SCOMPLEX)
rblapack_d = na_change_type(rblapack_d, NA_SCOMPLEX);
d = NA_PTR_TYPE(rblapack_d, complex*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (2th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (2th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
p = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
if (rblapack_lwork == Qnil)
lwork = m+n+p;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = m;
rblapack_x = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
x = NA_PTR_TYPE(rblapack_x, complex*);
{
na_shape_t shape[1];
shape[0] = p;
rblapack_y = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
y = NA_PTR_TYPE(rblapack_y, complex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, complex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = m;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = p;
rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, complex*);
MEMCPY(d_out__, d, complex, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
cggglm_(&n, &m, &p, a, &lda, b, &ldb, d, x, y, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(7, rblapack_x, rblapack_y, rblapack_work, rblapack_info, rblapack_a, rblapack_b, rblapack_d);
}
void
init_lapack_cggglm(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cggglm", rblapack_cggglm, -1);
}
|